精英家教网 > 高中数学 > 题目详情

本小题满分14分)如图,四棱锥E—ABCD中,ABCD是矩形,平面EAB平面ABCD,AE=EB=BC=2,F为CE上的点,

且BF平面ACE.

(1)求证:AEBE;

(2)求三棱锥D—AEC的体积;

(3)求二面角A—CD—E的余弦值.

 

 

【答案】

解:(1)ABCD是矩形,BCAB,平面EAB平面ABCD,

平面EAB平面ABCD=AB,BC平面ABCD,BC平面EAB,

EA平面EAB,BCEA ,BF平面ACE,EA平面ACE,BF EA, BC BF=B,BC平面EBC,BF平面EBC,EA平面EBC ,BE平面EBC, EA BE。 

(2) EA BE,AB=

 ,设O为AB的中点,连结EO,

∵AE=EB=2,EOAB,平面EAB平面ABCD,EO平面ABCD,即EO为三棱锥E—ADC的高,且EO=

(3)以O为原点,分别以OE、OB所在直线为,如图建立空间直角坐标系,则 ,由(2)知是平面ACD的一个法向量,设平面ECD的法向量为,则,即,令,则,所以,设二面角A—CD—E的平面角的大小为,由图得 

所以二面角A—CD—E的余弦值为

 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本小题满分14分)

如图6所示,等腰三角形△ABC的底边AB=,高CD=3.点E是线段BD上异于B、D的动点.点F在BC边上,且EF⊥AB.现沿EF将△BEF折起到△PEF的位置,使PE⊥AE.

记BE=x,V(x)表示四棱锥P-ACFE的体积。

 (1)求V(x)的表达式;

 (2)当x为何值时,V(x)取得最大值?

 (3)当V(x)取得最大值时,求异面直线

AC与PF所成角的余弦值。

查看答案和解析>>

科目:高中数学 来源:2011年广东省执信中学高二上学期期中考试数学 题型:解答题

(本小题满分14分) 如图,在长方体   
(1)证明:当点;
(2)(理)在棱上是否存在点?若存在,求出的长;若不存在,请说明理由.
(文)在棱使若存在,求出的长;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:2011届广东省华南师大附中高三综合测试数学文卷 题型:解答题

.(本小题满分14分)
如图所示,在直角梯形ABCD中,,曲线段.DE上
任一点到A、B两点的距离之和都相等.
(Ⅰ) 建立适当的直角坐标系,求曲线段DE的方程;
(Ⅱ) 过C能否作-条直线与曲线段DE 相交,且所
得弦以C为中点,如果能,求该弦所在的直线
的方程;若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省济宁市高三11月月考理科数学 题型:解答题

(本小题满分14分)如图,是边长为4的正方形,平面

 

(1)求证:平面

(2)设点是线段上一个动点,试确定点的位置,使得平面,并

证明你的结论。

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年北京市西城区高三上学期期末考试理科数学试卷 题型:解答题

(本小题满分14分)如图,在直三棱柱中,的中点.

 

 

(Ⅰ)求证:∥平面

(Ⅱ)求二面角的余弦值;

(Ⅲ)试问线段上是否存在点,使角?若存在,确定点位置,若不存在,说明理由.

 

查看答案和解析>>

同步练习册答案