【题目】设
是定义在正整数集上的函数,且
满足:当
成立时,总可推出
成立那么下列命题中正确的是( )
A.若
成立,则当
时均有
成立
B.若
成立,则当
时均有
成立
C.若
成立,则当
时均有
成立
D.若
成立,则当
时均有![]()
科目:高中数学 来源: 题型:
【题目】(本小题满分12分,(1)小问5分,(2)小问7分)
如图,椭圆
的左、右焦点分别为
过
的直线交椭圆于
两点,且![]()
![]()
(1)若
,求椭圆的标准方程
(2)若
求椭圆的离心率![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】圆
的方程为:
,
为圆上任意一点,过
作
轴的垂线,垂足为
,点
在
上,且
.
(1)求点
的轨迹
的方程;
(2)过点
的直线与曲线
交于
、
两点,点
的坐标为
,
的面积为
,求
的最大值,及直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥
中,
与
都为等边三角形,且侧面
与底面
互相垂直,
为
的中点,点
在线段
上,且
,
为棱
上一点.
![]()
(1)试确定点
的位置,使得
平面
;
(2)在(1)的条件下,求二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
是由非负整数组成的无穷数列,该数列前n项的最大值记为
,第n项之后的各项
的最小值记为
,设
.
(1)若
为
,是一个周期为4的数列,写出
的值;
(2)设d为非负整数,证明:
)的充要条件是
是公差为d的等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种“笼具”由内,外两层组成,无下底面,内层和外层分别是一个圆锥和圆柱,其中圆柱与圆锥的底面周长相等,圆柱有上底面,制作时需要将圆锥的顶端剪去,剪去部分和接头忽略不计,已知圆柱的底面周长为
,高为
,圆锥的母线长为
.
![]()
(1)求这种“笼具”的体积(结果精确到0.1
);
(2)现要使用一种纱网材料制作50个“笼具”,该材料的造价为每平方米8元,共需多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com