精英家教网 > 高中数学 > 题目详情

的内角,,所对的边长分别为,,,且,
(1)当时,求的值;
(2)当的面积为时,求的值.

(1);(2).

解析试题分析:(1)先由计算出,然后根据正弦定理公式即可算出的值;(2)先根据的面积为3得到,再结合余弦定理得到,最后由可计算得结果.
试题解析:(1)因为,所以      2分
由正弦定理,可得      4分
所以      5分
(2)因为的面积
所以      7分
由余弦定理
,即      10分
所以
所以,      13分.
考点:1.正弦定理;2.余弦定理;3.三角形的面积计算公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知向量.
(1)求函数的单调递减区间;
(2)在中,分别是角的对边,,,
,求的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在等腰直角△OPQ中,∠POQ=90°,OP=2,点M在线段PQ上.

(1)若OM=,求PM的长;
(2)若点N在线段MQ上,且∠MON=30°,问:当∠POM取何值时,△OMN的面积最小?并求出面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图像经过点
(1)求的值;
(2)在中,所对的边分别为,若,且.求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,摄影爱好者在某公园A处,发现正前方B处有一立柱,测得立柱顶端O的仰角和立柱底部B的俯角均为30°,已知摄影爱好者的身高约为米(将眼睛S距地面的距离SA按米处理).

(1)求摄影爱好者到立柱的水平距离AB和立柱的高度OB.
(2)立柱的顶端有一长为2米的彩杆MN,且MN绕其中点O在摄影爱好者与立柱所在的平面内旋转.在彩杆转动的任意时刻,摄影爱好者观察彩杆MN的视角∠MSN(设为θ)是否存在最大值?若存在,请求出∠MSN取最大值时cosθ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,内角A,B,C所对的边分别为a,b,c,cos B=.
(1)求cos(A+C)的值;
(2)求sin的值;
(3)若·=20,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某旅游景点有一处山峰,游客需从景点入口A处向下沿坡角为α的一条小路行进a百米后到达山脚B处,然后沿坡角为β的山路向上行进b百米后到达山腰C处,这时回头望向景点入口A处俯角为θ,由于山势变陡到达山峰D坡角为γ,然后继续向上行进c百米终于到达山峰D处,游览风景后,此游客打算乘坐由山峰D直达入口A的缆车下山结束行程,如图所示,假设ABCD四个点在同一竖直平面.
 
(1)求BD两点的海拔落差h
(2)求AD的长

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,角ABC对应的边分别是 abc.已知cos 2A-3cos(BC)=1.
(1)求角A的大小;
(2)若△ABC的面积S=5b=5,求sin Bsin C的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

座落于我市红梅公园边的天宁宝塔堪称中华之最,也堪称佛塔世界之最.如图,已知天宁宝塔AB高度为150米,某大楼CD高度为90米,从大楼CD顶部C看天宁宝塔AB的张角,求天宁宝塔AB与大楼CD底部之间的距离BD.

查看答案和解析>>

同步练习册答案