(本题满分12分)
已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线
在y轴上的截距为m(m≠0),
交椭圆于A、B两个不同点。
(1)求椭圆的方程;
(2)求m的取值范围;
(3)求证直线MA、MB与x轴始终围成一个等腰三角形.
(1)
;(2)
;
(3)直线MA、MB与x轴始终围成一个等腰三角形。
【解析】
试题分析:(1)先设出椭圆的标准方程,根据题意联立方程组,求得a和b,椭圆的方程可得.
(2)由点斜式设出直线l的方程与椭圆方程联立消去y,根据判别式大于0求得k的范围.
(3)设A(x1,y1),B(x2,y2)由根据韦达定理,分别求得x1+x2和x1x2进而表示出k1和k2,进而可求得k1+k2.从而确定三角形为等腰三角形。
解:(1)设椭圆方程为![]()
则
∴椭圆方程为![]()
(2)∵直线l平行于OM,且在y轴上的截距为m ; 又KOM=![]()
![]()
由![]()
∵直线l与椭圆交于A、B两个不同点,
![]()
(3)设直线MA、MB的斜率分别为k1,k2,只需证明k1+k2=0即可
设
则![]()
由
可得 ![]()
而![]()
![]()
![]()
故直线MA、MB与x轴始终围成一个等腰三角形。
考点:本试题主要考查了椭圆的应用.考查了学生综合分析问题和解决问题的能力.
点评:对于解析几何问题关键是要设出直线方程并能利用设而不求的思想和韦达定理得到要求解的关系式,使我们必须要用到的重要的思想方法。
科目:高中数学 来源: 题型:
| π | 2 |
查看答案和解析>>
科目:高中数学 来源:2012-2013学年上海市金山区高三上学期期末考试数学试卷(解析版) 题型:解答题
(本题满分12分,第1小题6分,第2小题6分)
已知集合A={x| | x–a | < 2,xÎR
},B={x|
<1,xÎR }.
(1) 求A、B;
(2) 若
,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年安徽省高三10月月考理科数学试卷(解析版) 题型:解答题
(本题满分12分)
设函数
(
,
为常数),且方程
有两个实根为
.
(1)求
的解析式;
(2)证明:曲线
的图像是一个中心对称图形,并求其对称中心.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年重庆市高三第二次月考文科数学 题型:解答题
(本题满分12分,(Ⅰ)小问4分,(Ⅱ)小问6分,(Ⅲ)小问2分.)
如图所示,直二面角
中,四边形
是边长为
的正方形,
,
为
上的点,且
⊥平面![]()
(Ⅰ)求证:
⊥平面![]()
(Ⅱ)求二面角
的大小;
(Ⅲ)求点
到平面
的距离.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com