【题目】已知
,
,
,
:
,
:
.给出以下四个命题:
①分别过点
,
,作
的不同于
轴的切线,两切线相交于点
,则点
的轨迹为椭圆的一部分;
②若
,
相切于点
,则点
的轨迹恒在定圆上;
③若
,
相离,且
,则与
,
都外切的圆的圆心在定椭圆上;
④若
,
相交,且
,则与
,
一个内切一个外切的圆的圆心的轨迹为椭圆的一部分.
则以上命题正确的是__________.
科目:高中数学 来源: 题型:
【题目】关于函数f(x)=
有如下四个命题:
①f(x)的图像关于y轴对称.
②f(x)的图像关于原点对称.
③f(x)的图像关于直线x=
对称.
④f(x)的最小值为2.
其中所有真命题的序号是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知斜率为1的直线交抛物线
:
(
)于
,
两点,且弦
中点的纵坐标为2.
(1)求抛物线
的标准方程;
(2)记点
,过点
作两条直线
,
分别交抛物线
于
,
(
,
不同于点
)两点,且
的平分线与
轴垂直,求证:直线
的斜率为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知离心率为
的椭圆
的左顶点为
,左焦点为
,及点
,且
、
、
成等比数列.
(1)求椭圆
的方程;
(2)斜率不为
的动直线
过点
且与椭圆
相交于
、
两点,记
,线段
上的点
满足
,试求
(
为坐标原点)面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知无穷数列
的前
项中的最大项为
,最小项为
,设
.
(1)若
,求数列
的通项公式;
(2)若
,求数列
的前
项和
;
(3)若数列
是等差数列,求证:数列
是等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给定下列四个命题,其中真命题是( )
A.垂直于同一直线的两条直线相互平行
B.若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行
C.垂直于同一平面的两个平面相互平行
D.若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“勾股定理”在西方被称为“毕达哥拉斯定理”,国时期吴国的数学家赵爽创制了一幅“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明
如图所示的“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个大正方形
若直角三角形中较小的锐角
,现在向该大止方形区域内随机地投掷一枚飞镖,则飞镖落在阴影部分的概率是
![]()
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com