分析 (1)利用正弦定理计算b;
(2)根据面积公式得出bc,再利用余弦定理计算b+c.
解答 解:(1)△ABC中,∵cosA=$\frac{3}{5}$,B=60°,
∴sinA=$\frac{4}{5}$,sinB=$\frac{\sqrt{3}}{2}$.
由正弦定理得$\frac{a}{sinA}=\frac{b}{sinB}$,即$\frac{1}{\frac{4}{5}}=\frac{b}{\frac{\sqrt{3}}{2}}$,
解得b=$\frac{5\sqrt{3}}{8}$.
(2)∵S△ABC=$\frac{1}{2}$bcsinA=4,
∴bc=10.
由余弦定理得cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{(b+c)^{2}-2bc-{a}^{2}}{2bc}$=$\frac{(b+c)^{2}-21}{20}$=$\frac{3}{5}$.
∴b+c=$\sqrt{33}$.
点评 本题考查了正余弦定理解三角形,三角形的面积公式,属于中档题/
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 21 | B. | -35 | C. | 35 | D. | -21 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com