精英家教网 > 高中数学 > 题目详情
7.椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左、右焦点分别是F1,F2,过F2作倾斜角为120°的直线与椭圆的一个交点为M,若MF1垂直于MF2,则椭圆的离心率为$\sqrt{3}-1$.

分析 结合图形,根据Rt△MF2 F1中,在Rt△MF1F2中,F1F2=2c,∠F1F2M=60°,求出MF2,MF1,根据椭圆的定义列出关于a、c的方程,求e的值.

解答 解:如图,
在Rt△MF1F2中,F1F2=2c,
∵∠F1F2M=60°,
∴MF2=c,MF1=2c×$\frac{\sqrt{3}}{2}$=$\sqrt{3}$c
MF1+MF2=c+$\sqrt{3}$c=2a,⇒e=$\frac{c}{a}$=$\sqrt{3}-1$.
故答案为$\sqrt{3}-1$.

点评 本题考查直角三角形中的边角关系,椭圆的简单性质,考查运算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.在四棱锥中P-ABCD,底面ABCD是正方形,侧面PAD⊥底面ABCD,且PA=PD=$\frac{{\sqrt{2}}}{2}$AD、E、F,分别为PC、BD的中点.
(1)求证:EF∥平面PAD;
(2)若AB=2,求三棱锥E-DFC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.θ取一切实数时,连接A(4sinθ,6cosθ)和B(-4cosθ,6sinθ)两点的线段的中点轨迹是.(  )
A.B.椭圆C.直线D.线段

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.对于函数f(x)和实数M,若存在m,n∈N*,使f(m)+f(m+1)+f(m+2)+…+f(m+n)=M成立,则称(m,n)为函数f(x)关于M的一个“生长点”.若(1,2)为函数$f(x)=cos({\frac{π}{2}x+\frac{π}{3}})$关于M的一个“生长点”,则M=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设f(x)=asin(πx+α)+bcos(πx+β)+4 (a、b、α、β为常数),且f(2000)=5,那么f(2009)等于(  )
A.1B.3C.5D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设f(x)=x2-$\frac{1}{x-2}\;,\;\;g(x)=\frac{1}{x-2}$+1,则f(x)+g(x)=x2+1,x≠2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某集团为获得更大的收益,每年要投入一定的资金用于广告促销.经调查,每年投入广告费t(百万元),可增加销售额约为-t2+7t(百万元)(0≤t≤4).
(1)若该公司将当年的广告费控制在400万元之内,则应投入多少广告费,才能使该公司获得的收益最大?
(2)现该公司准备共投入400万元,分别用于广告促销和技术改造.经预测,每投入技术改造费x(百万元),可增加的销售额为-$\frac{1}{3}$x3+x2+3x(百万元).请设计一个资金分配方案,使该公司获得的收益最大.(注:收益=销售额-投入)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数y=$\frac{{{{({x-1})}^0}}}{{\sqrt{x+1}}}$的定义域是{x|x>-1且x≠1}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若函数$f(x)={log_3}({{x^2}+ax-a})$的值域是R,则实数a的取值范围是(-∞,-4]∪[0,+∞).

查看答案和解析>>

同步练习册答案