精英家教网 > 高中数学 > 题目详情

已知函数,其中.

(I)若函数在区间(1,2)上不是单调函数,试求的取值范围;

(II)已知,如果存在,使得函数处取得最小值,试求的最大值.

 

【答案】

(I)的取值范围是;(II)的最大值为

【解析】

试题分析:(I)由题意知,在区间(1,2)上有不重复的零点,

,得,

因为,所以  3分

,则,故在区间(1,2)上是增函数,

所以其值域为,从而的取值范围是       5分

(II),

由题意知恒成立,

恒成立,

  ①对恒成立   7分

时,①式显然成立;                                  8分

时,①式可化为    ②,

,则其图象是开口向下的抛物线,所以 

9分

,其等价于   ③ ,

因为③在时有解,所以,解得.

从而的最大值为           12分

考点:本题主要考查应用导数研究函数的单调性、最值及不等式恒成立问题。

点评:典型题,本题属于导数应用中的基本问题,通过研究函数的单调性,明确了极值情况。通过研究函数的单调区间、极值,最终确定最值情况。涉及恒成立问题,往往通过构造函数,研究函数的最值,得到解题目的。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(09年大丰调研) (16分)

已知函数(其中) ,

从左到右依次是函数图象上三点,且.

(Ⅰ) 证明: 函数上是减函数;

(Ⅱ)求证:是钝角三角形;

(Ⅲ) 试问,能否是等腰三角形?若能,求面积的最大值;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(06年天津卷文)(12分)

已知函数其中为参数,且

       (I)当时,判断函数是否有极值;

       (II)要使函数的极小值大于零,求参数的取值范围;

       (III)若对(II)中所求的取值范围内的任意参数,函数在区间内都是增函数,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数  其中。作出函数的图象;

查看答案和解析>>

科目:高中数学 来源:2013届浙江省杭州市萧山五校高二下期中理科数学试卷(解析版) 题型:解答题

已知函数(其中常数a,b∈R)。 是奇函数.

(Ⅰ)求的表达式;

(Ⅱ)求在区间[1,2]上的最大值和最小值.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年四川省成都市高三上学期九月诊断性考试理科数学卷 题型:解答题

(本题满分12分)

已知函数其中a>0,e为自然对数的底数。

(I)求

(II)求的单调区间;

(III)求函数在区间[0,1]上的最大值。

 

查看答案和解析>>

同步练习册答案