【题目】下图是某省从1月21日至2月24日的新冠肺炎每日新增确诊病例变化曲线图.
![]()
若该省从1月21日至2月24日的新冠肺炎每日新增确诊人数按日期顺序排列构成数列
,
的前n项和为
,则下列说法中正确的是( )
A.数列
是递增数列B.数列
是递增数列
C.数列
的最大项是
D.数列
的最大项是![]()
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,过动点
作直线
的垂线,垂足为
,且满足
,其中
为坐标原点,动点
的轨迹为曲线
.
(Ⅰ)求曲线
的方程;
(Ⅱ)过点
作与
轴不平行的直线
,交曲线
于
,
两点,点
,记
,
,
分别为
,
,
的斜率,求证:
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(I)若
,判断
上的单调性;
(Ⅱ)求函数
上的最小值;
(III)当
时,是否存在正整数n,使
恒成立?若存在,求出n的最大值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在“数学发展史”知识测验后,甲、乙、丙三人对成绩进行预测:
甲说:我的成绩比乙高;
乙说:丙的成绩比我和甲的都高;
丙说:我的成绩比乙高.
成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人中预测正确的是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
,
,过点
的直线与椭圆
交于
两点,延长
交椭圆
于点
,
的周长为8.
![]()
(1)求
的离心率及方程;
(2)试问:是否存在定点
,使得
为定值?若存在,求
;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
,过点
的直线与椭圆
交于
两点,
的周长为8,直线
被椭圆
截得的线段长为
.
(1)求椭圆
的方程;
(2)设
是椭圆上两动点,线段
的中点为
,
的斜率分别为
(
为坐标原点),且
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2)(本小题满分7分)选修4-4:坐标系与参数方程
在直接坐标系
中,直线l的方程为x-y+4=0,曲线C的参数方程为
.
(I)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,
),判断点P与直线l的位置关系;
(II)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com