(本题满分12分)已知定义域为(0,+∞)的函数f(x)满足:
①x>1时,f(x)<0,②f(
)=1,③对任意x,y
( 0,+∞),
都有f(xy)= f(x)+ f(y),求不等式f(x)+ f(5-x)≥-2的解集。
。
【解析】
试题分析:(1)构造函数中两个任意变量的函数值差,结合函数表达式得到函数单调性的证明。
(2)结合特殊值的函数值,得到f(4)=-2,进而得到函数的不等式的求解。
解:设0<x1<x2,则
>1,∵f(xy)= f(x)+ f(y)
∴f(x2)= f(
)= f(
)+ f(x1)
又∵x>1时,f(x)<0,∴f(
)<0
∴f(x2)<f(x1),∴f(x)是( 0,+∞)上的减函数。又∵f(1)= f(1)+ f(1)
∴f(1)=0,而f(
)=1,∴f(2
)= f(2)+ f(
)=0
∴f(2)=-1,∴f(x)+ f(5-x)≥-2=2 f(2)= f(4)
∴
,∴0<x≤1,或4≤x<5
∴原不等式的解集是
。
考点:本题主要考查了函数的单调性的运用。
点评:解决该试题的关键是能利用已知条件分析得到函数的单调性的证明,结合已知的关系式将所求的表示为一个整体函数式,同时能结合单调性得到求解。
科目:高中数学 来源: 题型:
| π | 2 |
查看答案和解析>>
科目:高中数学 来源:安徽省合肥一中、六中、一六八中学2010-2011学年高二下学期期末联考数学(理 题型:解答题
(本题满分12分)已知△
的三个内角
、
、
所对的边分别为
、
、
.
,且
.(1)求
的大小;(2)若
.求
.
查看答案和解析>>
科目:高中数学 来源:2011届本溪县高二暑期补课阶段考试数学卷 题型:解答题
(本题满分12分)已知各项均为正数的数列
,
的等比中项。
(1)求证:数列
是等差数列;(2)若
的前n项和为Tn,求Tn。
查看答案和解析>>
科目:高中数学 来源:2010-2011学年广东省揭阳市高三调研检测数学理卷 题型:解答题
(本题满分12分)
已知椭圆
:
的长轴长是短轴长的
倍,
,
是它的左,右焦点.
(1)若
,且
,
,求
、
的坐标;
(2)在(1)的条件下,过动点
作以
为圆心、以1为半径的圆的切线
(
是切点),且使
,求动点
的轨迹方程.
查看答案和解析>>
科目:高中数学 来源:2010年辽宁省高二上学期10月月考理科数学卷 题型:解答题
(本题满分12分)已知椭圆
的长轴,短轴端点分别是A,B,从椭圆上一点M向x轴作垂线,恰好通过椭圆的左焦点,向量
与
是共线向量
(1)求椭圆的离心率
(2)设Q是椭圆上任意一点,
分别是左右焦点,求
的取值范围
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com