精英家教网 > 高中数学 > 题目详情
1.若x,y满足约束条件$\left\{{\begin{array}{l}{x-1≥0}\\{x-y<0}\\{x+y-4≤0}\end{array}}\right.$则$\frac{x+2y}{2x+y}$的取值范围为(  )
A.$[1,\frac{7}{5}]$B.$(1,\frac{7}{5}]$C.[1,2]D.(1,2]

分析 画出约束条件的可行域,化简所求表达式,利用表达式的几何意义,求解即可.

解答 解:x,y满足约束条件$\left\{{\begin{array}{l}{x-1≥0}\\{x-y<0}\\{x+y-4≤0}\end{array}}\right.$的可行域如图:
则$\frac{x+2y}{2x+y}$=$\frac{x+\frac{1}{2}y+\frac{3}{2}y}{2x+y}$=$\frac{1}{2}$+$\frac{3}{4\frac{x}{y}+2}$.

由可行域可知:$\frac{y}{x}$∈[1,kOA],由$\left\{\begin{array}{l}{x-1=0}\\{x+y-4=0}\end{array}\right.$,可得A(1,3),
kOA=3,
$\frac{4x}{y}$∈$[\frac{4}{3},4]$,$\frac{4x}{y}$+2∈$[\frac{10}{3},6]$,
$\frac{3}{4\frac{x}{y}+2}$∈$[\frac{1}{2},\frac{9}{10}]$,
则$\frac{x+2y}{2x+y}$∈[1,$\frac{7}{5}$].
故选:A.

点评 本题考查了利用线性规划求目标函数的值域,一般分两步进行:
1、根据不等式组,作出不等式组表示的平面区域;
2、由目标函数的特点及几何意义,利用数形结合思想,转化为图形之间的关系问题求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=2$\sqrt{3}$sinxsin($\frac{π}{2}$-x)+2cos2x+a的最大值为3.
(Ⅰ)求f(x)的对称轴方程和a的值;
(Ⅱ)试讨论函数f(x)在区间[-$\frac{π}{3}$,$\frac{π}{3}$]上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.(1+2x+$\frac{1}{{x}^{2}}$)5的展开式中常数项为121.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知回归直线方程为$\hat y=\hat bx+\hat a$,样本点的中心为$(\overline x,\overline y)$,若回归直线的斜率估计值为2,且$\sum_{i=1}^{10}{{x_i}=30}$,$\sum_{i=1}^{10}{{y_i}=50}$,则回归直线方程为(  )
A.$\hat y=2x-3$B.$\hat y=2x-4$C.$\hat y=2x-1$D.$\hat y=2x+2$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知在△ABC中,角A,B,C所对的边分别为a,b,c,且$(sinA+sinB)(b-a)=sinC(\sqrt{3}b-c)$.
(Ⅰ)求角A的大小;
(Ⅱ) 若a=2,△ABC的面积为$\sqrt{3}$,求b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.定义集合A?B={x|x∈A或x∈B且x∉A∩B},设全集U={x|1<x<10},集合A={x|2<x<6},B={x|5<x<7},则(∁UA)?B=(  )
A.[6,7)B.(1,2]∪(5,6)∪[7,10)C.(1,6)D.(1,2]∪(5,6]∪(7,10)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知正方形ABCD中,点A(2,1),C(6,-3).若将点A折起,使其与边BC的中点E重合,则该折线所在直线方程为x-2y-5=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.给出下面4个关系式中①0?{0,1};②0∈{0,1};③{0}?{0,1};④{0}⊆{0,1},其中正确的有(  )
A.①②B.②③C.③④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC中,若已知A=60°,C=45°和a=2,则此三角形的最小边长为$\frac{2\sqrt{6}}{3}$.

查看答案和解析>>

同步练习册答案