精英家教网 > 高中数学 > 题目详情

【题目】已知函数, 是自然对数的底数).

1)当时,求曲线在点处的切线方程;

(2)当时,不等式恒成立,求实数的取值范围.

【答案】(Ⅰ)(Ⅱ)

【解析】试题分析: (Ⅰ)先求出函数的导函数,将代入可得在此切点处的斜率,再由曲线方程可求出切点坐标,利用点斜式式写出切线方程; (Ⅱ)求出的导函数函数,令为,再求的导函数,去判断的单调性,再进一步判断的单调性,可求出的最小值,将恒成立问题转为关于的不等式即可.注意对的分类讨论.

试题解析:(Ⅰ)当时,有

又因为

∴曲线在点处的切线方程为,即

(Ⅱ)因为,令

)且函数上单调递增

时,有,此时函数上单调递增,则

(ⅰ)若时,有函数上单调递增,

恒成立;

时,则在存在

此时函数 上单调递减, 上单调递增且

所以不等式不可能恒成立,故不符合题意;

时,有存在,此时上单调递减, 上单调递增所以函数上先减后增

,则函数上先减后增

所以不等式不可能恒成立,故不符合题意;

综上所述,实数的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数有两个不同的零点.

(Ⅰ)求的取值范围;

(Ⅱ)记两个零点分别为,且,已知,若不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有甲、乙两个班级进行数学考试,按照大于或等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的2×2列联表.已知从全部210人中随机抽取1人为优秀的概率为.

(1)请完成上面的2×2列联表,并判断若按99%的可靠性要求,能否认为“成绩与班级有关”;

(2)从全部210人中有放回地抽取3次,每次抽取1人,记被抽取的3人中的优秀人数为ξ,若每次抽取的结果是相互独立的,求ξ的分布列及数学期望E(ξ).

P(K2k0)

0.05

0.01

k0

3.841

6.635

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.

(Ⅰ)当0≤x≤200时,求函数v(x)的表达式;

(Ⅱ)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=xv(x)可以达到最大,并求出最大值.(精确到1辆/小时).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}a13a1021通项an相应的函数是一次函数.

(1) 求数列{an}的通项公式;

(2) {bn}是由a2a4a6a8…组成试求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线C的参数方程为 (其中为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系中,直线的极坐标方程为.

C的普通方程和直线的倾斜角;

设点(0,2),交于两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设全集U=R,集合A={x|-1≤x<3},B={x|2x-4≥x-2}.

(1)U(AB);

(2)若集合C={x|2xa>0},满足BCC,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数在区间上单调递增;函数在其定义域上存在极值.

(1)若为真命题,求实数的取值范围;

(2)如果为真命题,为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)已知函数f(x)的定义域为[0,1],求f(x2+1)的定义域;

(2)已知f()的定义域为[0,3],求f(x)的定义域.

查看答案和解析>>

同步练习册答案