精英家教网 > 高中数学 > 题目详情
1.在△ABC中,a=4,b=7,sinB=$\frac{1}{4}$,则sinA=(  )
A.$\frac{1}{7}$B.$\frac{7}{16}$C.$\frac{7}{8}$D.$\frac{4}{7}$

分析 利用正弦定理列出关系式,把a,b,sinB的值代入计算即可求出sinA的值.

解答 解:∵在△ABC中,a=4,b=7,sinB=$\frac{1}{4}$,
∴由正弦定理$\frac{a}{sinA}$=$\frac{b}{sinB}$,得:sinA=$\frac{asinB}{b}$=$\frac{4×\frac{1}{4}}{7}$=$\frac{1}{7}$,
故选:A.

点评 此题考查了正弦定理,熟练掌握正弦定理是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.函数f(x)=ae2cosx(x∈[0,+∞),记xn为f(x)的从小到大的第n(n∈N*)个极值点.
(1)证明:数列{f(xn)}是等比数列;
(2)若对一切n∈N*,xn≤|f(xn)|恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若复数z=$\frac{{i}^{2015}}{1-i}$(其中i是虚数单位),则复数z在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.以下各点坐标与点$M(-5,\frac{π}{3})$不同的是(  )
A.(5,-$\frac{π}{3}$)B.$(5,\frac{4π}{3})$C.$(5,-\frac{2π}{3})$D.$(-5,-\frac{5π}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.电视传媒公司为了解某地区观众对某体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名,下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.
(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?
非体育迷体育迷合计
    
1055
合计
(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X.若每次抽取的结果是相互独立的,求X的分布列,期望E(X)和方差D(X).
P(K2≥k)0.050.01
k3.8416.635
附:K2=$\frac{n(ad-bc)2}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.调查在2~3级风的海上航行中男、女乘客的晕船情况,结果如表所示:
晕船不晕船合计
男性122537
女性102434
合计224971
根据此资料,你是否认为在2~3级风的海上航行中男性比女性更容易晕船?
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.250.150.100.0250.0100.005
k1.3232.0722.7065.0246.6357.879

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.△ABC的三内角A,B,C的对边分别为a,b,c,已知:a,b,c成等比数列  
(1)求角B的取值范围;
(2)是否存在实数m,使得不等式(x+3+sin2B)2+[x+$\sqrt{2}$msin(B+$\frac{π}{4}$)]2≥$\frac{1}{8}$对任意的实数x及满足已知条件的所有角B都成立?若存在,求出m的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知等比数列{an}中,an>0,a2=3,a6=243,则该数列的通项公式an=3n-1,数列{log3an}的前n项的和为$\frac{{n}^{2}-n}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.为了研究某种细菌随时间x变化,繁殖的个数,收集数据如下:
天数x/天 1 2 34 56
繁殖个数y/个 6 12 25 49  95190
(1)用天数作解释变量,繁殖个数作预报变量,作出这些数据的散点图,根据散点图判断:y=a+bx与y=${C_1}{e^{{C_2}x}}$哪一个作为繁殖的个数y关于时间x变化的回归方程类型为最佳?(给出判断即可,不必说明理由)
$\overline x$$\overline y$$\overline z$$\sum_{i=1}^6{({x_i}-\overline x}{)^2}$$\sum_{i=1}^6{({x_i}-\overline x})({y_i}-\overline y)$$\sum_{i=1}^6{({x_i}-\overline x})({z_i}-\overline z)$
3.562833.5317.5596.50512.04
其中zi=lnyi;$\overline z=\frac{1}{6}\sum_{i=1}^6{z_i}$
(2)根据(1)的判断最佳结果及表中的数据,建立y关于x 的回归方程.
参考公式:$b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$$a=\overline y-b\overline x$.

查看答案和解析>>

同步练习册答案