精英家教网 > 高中数学 > 题目详情
10.已知等比数列{an}中,an>0,a2=3,a6=243,则该数列的通项公式an=3n-1,数列{log3an}的前n项的和为$\frac{{n}^{2}-n}{2}$.

分析 通过等比数列{an}的概念可知q4=$\frac{{a}_{6}}{{a}_{2}}$,进而可知an=a2•qn-2=3n-1,利用对数的性质可知log3an=n-1,通过等差数列的求和公式计算即得结论.

解答 解:设等比数列{an}的公比为q,
∵a2=3,a6=243,
∴q4=$\frac{{a}_{6}}{{a}_{2}}$=$\frac{243}{3}$=81,
又∵an>0,
∴q=3,
∴an=a2•qn-2=3•3n-2=3n-1
∴log3an=log33n-1=n-1,
∴数列{log3an}的前n项的和为:$\frac{n(n-1)}{2}$=$\frac{{n}^{2}-n}{2}$,
故答案为:${3^{n-1}},\frac{{{n^2}-n}}{2}$.

点评 本题考查数列的通项及前n项和,涉及对数的性质等基础知识,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知A(-1,0),B(5,6),C(3,4),则$\frac{{|{CB}|}}{{|{AC}|}}$=(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,a=4,b=7,sinB=$\frac{1}{4}$,则sinA=(  )
A.$\frac{1}{7}$B.$\frac{7}{16}$C.$\frac{7}{8}$D.$\frac{4}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若函数f(x)=ex-mx2定义域为(0,+∞),值域为[0,+∞),则m的值为$\frac{{e}^{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,若C=$\frac{π}{4}$,a=6,B=$\frac{π}{6}$,则ab等于(  )
A.36$\sqrt{3}$+36B.6$\sqrt{3}$+6C.3$\sqrt{6}-3\sqrt{2}$D.18$\sqrt{6}-18\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设非零向量$\overrightarrow a$与$\overrightarrow b$的夹角是$\frac{5π}{6}$,且$|\overrightarrow a|=|\overrightarrow a+\overrightarrow b|$,则$\frac{|2\overrightarrow a+t\overrightarrow b|}{|\overrightarrow b|}$(t∈R)的最小值是$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.下面五个命题中,其中正确的命题序号为②③⑤.
①若非零向量$\overrightarrow a,\overrightarrow b$满足$|{\overrightarrow a-\overrightarrow b}|=|{\overrightarrow a}|+|{\overrightarrow b}$|,则存在实数λ>0,使得$\overrightarrow b=λ\overrightarrow a$;
②函数 $f(x)=4cos(2x-\frac{π}{6})$的图象关于点$(-\frac{π}{6},0)$对称;
③在△ABC中,A>B?sinA>sinB;
④在$(-\frac{π}{2},\frac{π}{2})$内方程 tanx=sinx有3个解;
⑤若函数y=Acos(ωx+φ)(A>0,ω>0)为奇函数,则φ=kπ+$\frac{π}{2}$(k∈Z).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.对具有线性相关关系的变量x,y有一组观测数据(xi,yi)(i=1,2,…8),其回归直线方程是$\hat y=\frac{1}{3}$x+a,且x1+x2+x3+…+x8=2(y1+y2+y3+…+y8)=6,则实数a的值是(  )
A.$\frac{1}{16}$B.$\frac{1}{8}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分为5组:[50,60),[60,70),[70,80),[80,90),[90,100)分别加以统计,得到如图所示的频率分布直方图.

(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率.
(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成2×2列联表,并判断是否能在犯错误的概率不超过0.1的前提下认为“生产能手与工人所在的年龄组有关”?(相关系数k=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1}+{n}_{2}+{2}^{n}+1}$,k>2.706时有99%的把握具有相关性)

查看答案和解析>>

同步练习册答案