精英家教网 > 高中数学 > 题目详情
19.对具有线性相关关系的变量x,y有一组观测数据(xi,yi)(i=1,2,…8),其回归直线方程是$\hat y=\frac{1}{3}$x+a,且x1+x2+x3+…+x8=2(y1+y2+y3+…+y8)=6,则实数a的值是(  )
A.$\frac{1}{16}$B.$\frac{1}{8}$C.$\frac{1}{4}$D.$\frac{1}{2}$

分析 求出横标和纵标的平均数,写出样本中心点,把样本中心点代入线性回归方程,得到关于a的方程,解方程即可.

解答 解:∵x1+x2+x3+…+x8=2(y1+y2+y3+…+y8)=6,
∴$\overline{x}$=$\frac{6}{8}$,$\overline{y}$=$\frac{3}{8}$,
∴样本中心点的坐标为($\frac{6}{8}$,$\frac{3}{8}$),
代入回归直线方程得,$\frac{3}{8}$=$\frac{1}{3}$×$\frac{6}{8}$+a,
∴a=$\frac{1}{8}$.
故选:B

点评 本题考查线性回归方程,解题的关键是线性回归直线一定过样本中心点,这是求解线性回归方程的步骤之一.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.以下各点坐标与点$M(-5,\frac{π}{3})$不同的是(  )
A.(5,-$\frac{π}{3}$)B.$(5,\frac{4π}{3})$C.$(5,-\frac{2π}{3})$D.$(-5,-\frac{5π}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知等比数列{an}中,an>0,a2=3,a6=243,则该数列的通项公式an=3n-1,数列{log3an}的前n项的和为$\frac{{n}^{2}-n}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.老张身高176cm,他爷爷、父亲、儿子的身高分别是173cm、170cm和182cm,因儿子的身高与父亲的身高有关,用回归分析的方法得到的回归方程为$\widehat{y}$=x+$\widehat{a}$,则预计老张的孙子的身高为(  )cm.
A.182B.183C.184D.185

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.数列{an}满足直线:x+ny+2=0和直线:3x+any+3=0平行,数列{bn}的前n项和记为Sn,其中bn=2an,若$\frac{{{S_n}-m{b_n}}}{{{S_n}-m{b_{n+1}}}}<\frac{1}{16}$,则满足条件的正整数对(m,n)=(1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.△ABC中,角A、B、C所对应的边分别a、b、c,已知bcosC+ccosB=2b,则$\frac{a}{2b}$=(  )
A.2B.$\frac{1}{2}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.为了研究某种细菌随时间x变化,繁殖的个数,收集数据如下:
天数x/天 1 2 34 56
繁殖个数y/个 6 12 25 49  95190
(1)用天数作解释变量,繁殖个数作预报变量,作出这些数据的散点图,根据散点图判断:y=a+bx与y=${C_1}{e^{{C_2}x}}$哪一个作为繁殖的个数y关于时间x变化的回归方程类型为最佳?(给出判断即可,不必说明理由)
$\overline x$$\overline y$$\overline z$$\sum_{i=1}^6{({x_i}-\overline x}{)^2}$$\sum_{i=1}^6{({x_i}-\overline x})({y_i}-\overline y)$$\sum_{i=1}^6{({x_i}-\overline x})({z_i}-\overline z)$
3.562833.5317.5596.50512.04
其中zi=lnyi;$\overline z=\frac{1}{6}\sum_{i=1}^6{z_i}$
(2)根据(1)的判断最佳结果及表中的数据,建立y关于x 的回归方程.
参考公式:$b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$$a=\overline y-b\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.过直线x+y=0上一点P作圆(x+1)2+(y-5)2=2的两条切线l1,l2,A,B为切点,当直线l1,l2关于直线y=-x对称时,∠APB=(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.袋中编号为1,2,3,4,5的五只小球,从中任取3只球.
(1)求编号之和不小于10的概率;
(2)以ξ表示取出的球的最大号码,求ξ的分布列及E(ξ)的值.

查看答案和解析>>

同步练习册答案