精英家教网 > 高中数学 > 题目详情
已知幂函数f(x)=xm2-2m-3(m∈z)为偶函数,且在区间(0,+∞)上是单调递减函数.
(1)求函数f(x)的解析式;
(2)讨论F(x)=a
f(x)
-
b
xf(x)
的奇偶性.
(1)f(x)=xm2-2m-3=xm(m-2)-3,由题意知m(m-2)为奇数又m∈z
且f(x)在(0,+∞)上递减,
∴m=1,?f(x)=x-4
(2)F(x)=a
x-4
-
b
x•x-4
=a•x-2-b•x3?(x≠0)

∵y=x-2是偶函数,y=x3是奇函数
①a≠0且b≠0时,F(x)为非奇非偶函数;
②a=0且b≠0时,F(x)为奇函数;
③a≠0且b=0时,F(x)为偶函数;
④a=b=0时,F(x)为奇且偶函数
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知幂函数f(x)=x-m2+2m+3(m∈Z)为偶函数且在区间(0,+∞)上是单调增函数.
(1)求函数f(x)的解析式;
(2)设函数g(x)=2
f(x)
-qx+q-1
,若g(x)>0对任意x∈[-1,1]恒成立,求实数q的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

.已知幂函数f(x)=xk2-2k-3(k∈N*)的图象关于y轴对称,且在区间(0,+∞)上是减函数,
(1)求函数f(x)的解析式;
(2)若a>k,比较(lna)0.7与(lna)0.6的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数f(x)=(m2-m-1)xm2-2m-1,满足f(-x)=f(x),则m=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数f(x)=xm2-2m-3(m∈Z)的图象与x轴、y轴无公共点且关于y轴对称.
(1)求m的值;
(2)画出函数y=f(x)的图象(图象上要反映出描点的“痕迹”).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数f(x)=x
3
2
+k-
1
2
k2
(k∈Z)

(1)若f(x)为偶函数,且在(0,+∞)上是增函数,求f(x)的解析式;
(2)若f(x)在(0,+∞)上是减函数,求k的取值范围.

查看答案和解析>>

同步练习册答案