精英家教网 > 高中数学 > 题目详情
(2011•邢台一模)设an(3-
x
)n
的展开式中x项的系数(n=2、3、4、…),则
lim
n→∞
(
32
a2
+
33
a3
+…+
3n
an
)
=
18
18
分析:利用二项展开式的通项公式求出展开式的通项,令x的指数为1,求出an,再由
3n
an
=
3n
C
2
n
3n-2
=
2
n(n-1)
=
18
n(n-1)
=18×(
1
n-1
-
1
n
)
,能求出
lim
n→∞
(
32
a2
+
33
a3
+
34
a4
+…+
3n
an
)
解答:解:展开式的通项为 Tr+1=(-1)r3n-r
C
r
n
x
r
2

r
2
=1
得r=2
∴an=3n-2Cn2
3n
an
=
3n
C
2
n
3n-2
=
2
n(n-1)
=
18
n(n-1)
=18×(
1
n-1
-
1
n
)

lim
n→∞
(
32
a2
+
33
a3
+
34
a4
+…+
3n
an
)

=
lim
n→∞
{18×[(1-
1
2
) +(
1
2
-
1
3
)+(
1
3
-
1
4
)+…+(
1
n-1
-
1
n
)]
}
=
lim
n→∞
[18×(1-
1
n
)]

=18.
故答案为:18.
点评:本题考查利用二项展开式的通项公式解决二项展开式的特定项问题、考查由函数解析式求函数值问题.解题时要注意裂项求和公式的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•邢台一模)若集合A={x|x2-3x-4>0},B={x||x-3|>4}则A∩(?RB)为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•邢台一模)已知等差数列{an}的公差d≠0,且a1、a2、a4成等比数列,则
S3
S9
的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•邢台一模)某射击游戏规定每击中目标一次得20分,游客甲每次击中目标的概率均为
2
3
,则他射5次得60分且恰有一次两连中的概率为
16
81
16
81
.(以最简分数作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•邢台一模)已知有下列四个命题:
①函数f(x)=2x-x2在(-∞,0)是增函数;
②若f(x)在R上恒有f(x+2)•f(x)=1,则4为f(x)的一个周期;
③函数y=2cosx2+sin2x的最小值为
2
+1

④对任意实数a、b、x、y,都有ax+by≤
a2+b2
x2+y2

则以上命题正确的是
①②④
①②④

查看答案和解析>>

同步练习册答案