(本小题满分12分)
A﹑B﹑C是直线
上的三点,向量
﹑
﹑
满足:
-[y+2
]·
+ln(x+1)·
=
;
(Ⅰ)求函数y=f(x)的表达式;
(Ⅱ)若x>0, 证明f(x)>
;
(Ⅲ)当
时,x![]()
及b![]()
都恒成立,求实数m的取值范围。
(I)f(x)=ln(x+1);(Ⅱ)令g(x)=f(x)-
,由
,
∵x>0∴
∴g(x)在 (0,+∞)上是增函数,故g(x)>g(0)=0,即f(x)>
;
(III)m≤-3或m≥3.
【解析】
试题分析:(I)由三点共线知识,∵
,∴
,∵A﹑B﹑C三点共线,
∴![]()
∴
.∴
∴
,
∴f(x)=ln(x+1)………………4分
(Ⅱ)令g(x)=f(x)-
,由
,
∵x>0∴
∴g(x)在 (0,+∞)上是增函数,故g(x)>g(0)=0,即f(x)>
;…8分
(III)原不等式等价于
,
令h(x)=
=
由![]()
当x∈[-1,1]时,[h(x)]max="0," ∴m2-2bm-3≥0,令Q(b)= m2-2bm-3,则由Q(1)≥0及Q(-1)≥0解得m≤-3或m≥3. …………12分
考点:本题考查了向量的运算及导函数的运用
点评:,解析几何综合题主要考查直线和圆锥曲线的位置关系以及范围、最值、定点、定值、存在性等问题,近几年高考题中经常出现了以函数、平面向量、导数、数列、不等式、平面几何、数学思想方法等知识为背景,综合考查运用圆锥曲线的有关知识分析问题、解决问题的能力
科目:高中数学 来源: 题型:
| ON |
| ON |
| 5 |
| OM |
| OT |
| M1M |
| N1N |
| OP |
| OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的
、
、
.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
![]()
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com