| A. | 1 | B. | 2 | C. | $\frac{5}{2}$ | D. | 3 |
分析 作出不等式组对于的平面区域,根据z=2x+y的最小值为4,利用数形结合即可得到结论.
解答 解:作出不等式组对于的平面区域如图:![]()
∵z=2x+y的最小值为4,即2x+y=4,
且y=-2x+z,则直线y=-2x+z的截距最小时,z也取得最小值,
则不等式组对应的平面区域在直线y=-2x+z的上方,
由$\left\{\begin{array}{l}{2x+y=4}\\{2x-y=0}\end{array}\right.$;,解得$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$,
即A(1,2),
此时A也在直线y=-x+b上,
即2=-1+b,
解得b=3,
故选:D
点评 本题主要考查线性规划的应用,利用z的几何意义,利用数形结合是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\sqrt{2}$ | C. | $\frac{3}{2}$+$\sqrt{2}$ | D. | $\frac{3}{2}$+2$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{5π}{6}$ | C. | $\frac{π}{3}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | B. | C. | D. |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com