精英家教网 > 高中数学 > 题目详情
19.若复数z满足(3-4i)z=5+10i,其中i为虚数单位,则z的虚部为(  )
A.-2B.2C.-2iD.2i

分析 把已知的等式变形,然后利用复数代数形式的乘除运算化简得答案.

解答 解:由(3-4i)z=5+10i,得
$z=\frac{5+10i}{3-4i}$=$\frac{(5+10i)(3+4i)}{(3-4i)(3+4i)}=\frac{-25+50i}{25}=-1+2i$,
∴z的虚部为2.
故选:B.

点评 本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.设i是虚数单位,$\overline{z}$是复数z的共轭复数,若z$•\overline{z}$=2($\overline{z}$+i),则z=(  )
A.-1-iB.1+iC.-1+iD.1-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在直角坐标系xOy中,以O为极点,x轴为正半轴为极轴建立极坐标系,圆C和直线l的极坐标方程分别为ρ=2cosθ,$\sqrt{5}$ρcos(θ+α)=2(其中tanα=2,α∈(0,$\frac{π}{2}$)).
(Ⅰ)求圆C和直线l的直角坐标方程;
(Ⅱ)设圆C和直线l相交于点A和点B,求以AB为直径的圆D的参数方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若实数x、y满足$\left\{\begin{array}{l}{2x-y≥0}\\{y≥x}\\{y≥-x+b}\end{array}\right.$且z=2x+y的最小值为4,则实数b的值为(  )
A.1B.2C.$\frac{5}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.对任意非零实数a、b,若a?b的运算原理如图所示,则log24?($\frac{1}{3}$)-1的值为(  )
A.$\frac{1}{3}$B.1C.$\frac{4}{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知三棱锥V-ABC,VA⊥平面ABC,在三角形ABC中,∠BAC=120°,AB=AC=VA=2,三棱锥V-ABC的外接球的表面积为(  )
A.16πB.$\frac{32π}{3}$C.$\frac{20\sqrt{5}π}{3}$D.20π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设{an}是公差不为零的等差数列,满足$a_4^2+a_5^2=a_6^2+a_7^2$,则该数列的前10项和等于(  )
A.-10B.-5C.0D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.把函数$y=5sin(2x-\frac{π}{6})$图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),再把所得函数的图象向右平移$\frac{π}{3}$个单位,得到图象的解析式为(  )
A.y=5cosxB.y=5cos4xC.y=-5cosxD.y=-5 cos4x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知,如图所示,全集U,集合M=Z(整数集)和N={x∈N|lg(1-x)<1},则图中阴影部分所示的集合的元素共有(  )
A.9个B.8个C.1个D.无穷个

查看答案和解析>>

同步练习册答案