精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
4•2x+2
2x+1
+x•cosx (-1≤x≤1)
,且f(x)存在最大值M和最小值N,则M、N一定满足(  )
分析:由已知中函数f(x)=
4•2x+2
2x+1
+x•cosx (-1≤x≤1)
的解析式,可以判断出函数的单调性,进而得到f(x)的最大值M和最小值N,进而得到答案.
解答:解:∵函数f(x)=
4•2x+2
2x+1
+x•cosx (-1≤x≤1)
为增函数
故M=f(1)=
4•21+2
21+1
+1•cos1
=
10
3
+cos1
N=f(-1)=
4•2-1+2
2-1+1
-1•cos(-1)
=
8
3
-cos1
故M+N=6
故选C
点评:本题考查的知识点是函数的最值及其意义,函数的单调性,其中根据已知中的函数解析式,判断出函数的单调性是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
4(a-3)x+a+
1
2
(x<0)
ax,(x≥0)
,若函数f(x)的图象经过点(3,
1
8
),则a=
 
;若函数f(x)满足对任意x1≠x2
f(x1)-f(x2)
x1-x2
<0
都有成立,那么实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
4-x2
|x-3|-3
,则它是(  )
A、奇函数B、偶函数
C、既奇又偶函数D、非奇非偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
4-x2(x>0)
2(x=0)
1-2x(x<0)

(1)求f(a2+1)(a∈R),f(f(3))的值;
(2)当-4≤x<3时,求f(x)取值的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
4-x2(x>0)
2(x=0)
1-2x(x<0)

(1)画出函数f(x)图象;
(2)求f(a2+1)(a∈R),f(f(3))的值;
(3)当-4≤x<3时,求f(x)取值的集合.

查看答案和解析>>

同步练习册答案