精英家教网 > 高中数学 > 题目详情
(2013•海淀区二模)已知函数f(x)=sin(2?x-
π
6
)(0<?<1)在区间[0,π]上的单调递增区间为
当0<?<
1
3
时,增区间为[0,π]; 当1>?≥
1
3
时,增区间为[0,
π
3?
].
当0<?<
1
3
时,增区间为[0,π]; 当1>?≥
1
3
时,增区间为[0,
π
3?
].
分析:令 2kπ-
π
2
≤2?x-
π
6
≤2kπ+
π
2
,k∈z,求得函数的增区间为[
?
-
π
6?
?
+
π
3?
],k∈z.再由x∈[0,π],进一步确定函数的增区间.
解答:解:∵函数f(x)=sin(2?x-
π
6
),令 2kπ-
π
2
≤2?x-
π
6
≤2kπ+
π
2
,k∈z,
求得
?
-
π
6?
≤x≤
?
+
π
3?
,k∈z,故函数的增区间为[
?
-
π
6?
?
+
π
3?
],k∈z.
再由x∈[0,π],
故当0<?<
1
3
时,
π
3?
>π,增区间为[0,π].
当1>?≥
1
3
时,
π
3?
≤π,增区间为[0,
π
3?
],
故答案为 当0<?<
1
3
时,增区间为[0,π]; 当1>?≥
1
3
时,增区间为[0,
π
3?
].
点评:本题主要考查由函数y=Asin(ωx+∅)的部分图象求解析式,复合三角函数的单调性,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•海淀区二模)双曲线C的左右焦点分别为F1,F2,且F2恰为抛物线y2=4x的焦点,设双曲线C与该抛物线的一个交点为A,若△AF1F2是以AF1为底边的等腰三角形,则双曲线C的离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•海淀区二模)已知函数f(x)=ex,A(a,0)为一定点,直线x=t(t≠0)分别与函数f(x)的图象和x轴交于点M,N,记△AMN的面积为S(t).
(Ⅰ)当a=0时,求函数S(t)的单调区间;
(Ⅱ)当a>2时,若?t0∈[0,2],使得S(t0)≥e,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•海淀区二模)已知椭圆M:
x2
a2
+
y2
b2
=1  (a>b>0)
的四个顶点恰好是一边长为2,一内角为60°的菱形的四个顶点.
(Ⅰ)求椭圆M的方程;
(Ⅱ)直线l与椭圆M交于A,B两点,且线段AB的垂直平分线经过点(0,  -
1
2
)
,求△AOB(O为原点)面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•海淀区二模)集合A={x|(x-1)(x+2)≤0},B={x|x<0},则A∪B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•海淀区二模)设A是由m×n个实数组成的m行n列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.
(Ⅰ) 数表A如表1所示,若经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负实数,请写出每次“操作”后所得的数表(写出一种方法即可); 
1 2 3 -7
-2 1 0 1
表1
(Ⅱ) 数表A如表2所示,若必须经过两次“操作”,才可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数a的所有可能值;
a a2-1 -a -a2
2-a 1-a2 a-2 a2
表2
(Ⅲ)对由m×n个实数组成的m行n列的任意一个数表A,能否经过有限次“操作”以后,使得到的数表每行的各数之和与每列的各数之和均为非负整数?请说明理由.

查看答案和解析>>

同步练习册答案