精英家教网 > 高中数学 > 题目详情
设函数f(x)是定义在R上的奇函数,在(
1
2
,1)
上单调递增,且满足f(-x)=f(x-1),给出下列结论:①f(1)=0;②函数f(x)的周期是2;③函数f(x)在(-
1
2
,0)
上单调递增;④函数f(x+1)是奇函数.
其中正确的命题的序号是
 
分析:①由f(-x)=f(x-1),用赋值法求解.②由奇函数和f(-x)=f(x-1),可得f(x-1)=-f(x),进而有f(x+2)=f(x)得证.③由②知无法得知其性质.④函数f(x+1)的图象是由f(x)的图象向左平移1个单位,由f(x)的性质判断出它是奇函数.
解答:解:①∵函数f(x)是定义在R上的奇函数
∴f(0)=0,
又∵f(-x)=f(x-1)
∴f(-1)=f(1)=0
正确.
②∵奇函数和f(-x)=f(x-1),
∴f(x-1)=-f(x),
∴f(x+2)=f(x)
∴函数f(x)的周期是2.
③由②知无法得知其性质,不正确.
④∵函数f(x+1)的图象是由f(x)的图象向左平移1个单位,
∵f(x)是奇函数,f(x-1)=-f(x),
∴f(1-x)=f(x),
即函数f(x)关于x=
1
2
对称,可得出(1,0)点也是对称中心
所以f(x+1)是奇函数,正确.
故答案为:①②④
点评:本题主要考查抽象函数的基本性质,涉及到奇偶性,单调性,对称性,周期性.考查全面具体,要求平时学习掌握知识要扎实,灵活.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)是定义在(-∞,+∞)上的增函数,如果不等式f(1-ax-x2)<f(2-a)对于任意x∈[0,1]恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在(0,+∞)上的减函数,并且满足f(xy)=f(x)+f(y),f(
1
3
)=1

(1)求f(
1
9
)

(2)若f(x)+f(2-x)<2,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在[-1,0)∪(0,1]上的偶函数,当x∈[-1,0)时,f(x)=x3-ax(a∈R).
(1)当x∈(0,1]时,求f(x)的解析式;
(2)若a>3,试判断f(x)在(0,1]上的单调性,并证明你的结论;
(3)是否存在a,使得当x∈(0,1]时,f(x)有最大值1?

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在[a,b]上的奇函数,则f(a+b)=
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在R上的偶函数.若当x≥0时,f(x)=
|1-
1
x
0
x>0;,
x=0.

(1)求f(x)在(-∞,0)上的解析式.
(2)请你作出函数f(x)的大致图象.
(3)当0<a<b时,若f(a)=f(b),求ab的取值范围.
(4)若关于x的方程f2(x)+bf(x)+c=0有7个不同实数解,求b,c满足的条件.

查看答案和解析>>

同步练习册答案