精英家教网 > 高中数学 > 题目详情
11.直角梯形的一条对角线把梯形分成两个三角形,其中一个是边长为30的等边三角形,则这个梯形的中位线长是(  )
A.15B.22.5C.45D.90

分析 要求梯形的中位线,根据梯形的中位线定理,需要求得梯形的上、下底;结合已知条件,发现根据等边三角形和30°的直角三角形,即可求解.

解答 解:∵AD=AC=CD=30,∠CAD=60°,
∴∠BAC=90°-∠CAD=90°-60°=30,
在Rt△ABC中,∠BAC=30°,
∴BC=$\frac{1}{2}$AC=$\frac{1}{2}$×30=15,
∴梯形中位线长是$\frac{1}{2}$(AD+BC)=$\frac{1}{2}$(30+15)=22.5.
故选:B.

点评 本题主要考查了梯形的中位线定理以及特殊角的三角函数值在解三角形中的综合应用,考查了数形结合思想的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.设椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{1-{a}^{2}}$=1的焦点在x轴上.
(1)若椭圆E的焦距为1,求椭圆E的方程;
(2)设F1,F2分别是椭圆E的左、右焦点,P为椭圆E上第一象限内的点,直线F2P交y轴于点Q,并且F1P⊥F1Q.证明:当a变化时,点P在定直线x+y=1上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=(2-a)lnx+2ax+$\frac{1}{x}$,(a∈R),函数h(x)=px-$\frac{p+2e-1}{x}$(其中e=2.718…).
(1)求f(x)的单调区间;
(2)若f(x)在x=1处的切线的倾斜角为$\frac{π}{4}$,在区间[1,e]至少存在一个x0,使得h(x0)>f(x0)成立,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,梯形ABCD中:AB∥DC,AB=2DC=10,BD=$\frac{4}{3}$AD=8,PO⊥平面ABCD,O、N分别是AD、AP的中点.
(1)求证:DN∥平面PBC.
(2)若PA与平面ABCD所成的角为$\frac{π}{4}$,且$\frac{PM}{MC}$=$\frac{5}{4}$,求二面角P-AD-M的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=2lnx-x2+a在[$\frac{1}{e}$,e]上有两个零点,则实数a的取值范围为(1,2+$\frac{1}{{e}^{2}}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知在平面直角坐标系xOy中,过定点P倾斜角为α的直线l的参数方程为:$\left\{\begin{array}{l}x=tcosα\\ y=-2+tsinα\end{array}\right.$(t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,圆心的极坐标为(3,$\frac{π}{2}$),半径为3的圆C与直线l交于A,B两点,则|PA|•|PB|=16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=1+t}\\{y=a-2t}\end{array}\right.$(t为参数)在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,极轴与x轴的非负半轴重合)中,圆C的方程为ρ=4cosθ.若直线l被圆C截得的弦长为$\sqrt{11}$,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=lnx-x+1,x∈(0,+∞),g(x)=x3-3a2x(a>0)
(1)求f(x)的最大值;
(2)若对?x1∈(0,+∞),总存在x2∈[1,2]使得f(x1)≤g(x2)成立,求a的取值范围;
(3)利用(1)的结论,证明不等式($\frac{1}{n}$)n+($\frac{2}{n}$)n+…+($\frac{n}{n}$)n<$\frac{e}{e-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数y=x+cosx的单调增区间为[2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$)(k∈Z).

查看答案和解析>>

同步练习册答案