精英家教网 > 高中数学 > 题目详情
3.函数y=x+cosx的单调增区间为[2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$)(k∈Z).

分析 先求导数,因为是求增区间,则让导数大于零求解即可.

解答 解:∵函数y=x+cosx
∴y′=1-sinx>0,
∴sinx<1,
∴x∈[2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$)(k∈Z).
故答案为:[2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$)(k∈Z).

点评 本题主要考查用导数法求函数的单调区间,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.直角梯形的一条对角线把梯形分成两个三角形,其中一个是边长为30的等边三角形,则这个梯形的中位线长是(  )
A.15B.22.5C.45D.90

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x2-2|x|+3.
(1)求函数f(x)的单调区间和值域;
(2)若方程f(x)=k有四个解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=$\left\{\begin{array}{l}kx+2,x≤0\\ lnx,x>0\end{array}$,若关于x的方程|f(x)|-e-x-2=0有3个不同的根,则非正实数k的取值范围是(  )
A.(-∞,0]B.{-e}C.(-∞,-e]D.(-e,0]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列函数中,既是偶函数又在区间(0,+∞)上单调递增的是(  )
A.y=$\frac{1}{x}$B.y=|x|C.y=e-xD.y=-x2+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.四面体ABCD中,∠CDB=∠CAB=90°,∠BCD=∠BCA=30°,BC=2,点D在平面ABC上的射影在棱BC上,点M在棱BD上,BM=λBD.
(Ⅰ)求证:AD⊥BC;
(Ⅱ)二面角A-MC-B的余弦值为$\frac{\sqrt{5}}{5}$,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图所示的几何体中,AD⊥平面APB,AD∥BC,AP⊥PB.
(1)求证:平面PAD⊥平面PBC;
(2)若AB=BC=2AD=2AP=2,点Q在线段AB上,且AQ=$\frac{1}{4}$AB,求二面角C-PQ-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在平面直角坐标系xOy中,曲线C1:$\left\{{\begin{array}{l}{x=a+acosφ}\\{y=asinφ}\end{array}}$(φ为参数,实数a>0),曲线C2:$\left\{{\begin{array}{l}{x=bcosφ}\\{y=b+bsinφ}\end{array}}$(φ为参数,实数b>0).在以O为极点,x轴的正半轴为极轴的极坐标系中,射线l:θ=α(ρ≥0,0≤α≤$\frac{π}{2}$)与C1交于O、A两点,与C2交于O、B两点.当α=0时,|OA|=1;当α=$\frac{π}{2}$时,|OB|=2.
(Ⅰ)求a,b的值;
(Ⅱ)求2|OA|2+|OA|•|OB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知在直角坐标系xOy中,圆锥曲线C的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数),定点A(0,-$\sqrt{3}$),F1,F2是圆锥曲线C的左、右焦点,直线l过点A,F1
(1)求圆锥曲线C及直线l的普通方程;
(2)设直线l与圆锥曲线C交于E,F两点,求弦EF的长.

查看答案和解析>>

同步练习册答案