精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=$\left\{\begin{array}{l}kx+2,x≤0\\ lnx,x>0\end{array}$,若关于x的方程|f(x)|-e-x-2=0有3个不同的根,则非正实数k的取值范围是(  )
A.(-∞,0]B.{-e}C.(-∞,-e]D.(-e,0]

分析 利用函数与方程之间的关系转化为两个函数的交点个数问题,利用数形结合进行求解即可.

解答 解:由|f(x)|-e-x-2=0得|f(x)|=e-x+2,
设g(x)=e-x+2,
作出函数g(x)和f(x)的图象如图:
当x>0时,|f(x)|=e-x+2有两个不同的根,
要使x的方程|f(x)|-e-x-2=0有3个不同的根,
则等价为当x≤0时,方程,|f(x)|=e-x+2有1个根,
∵k≤0,
∴由kx+2=0得x=-$\frac{2}{k}$>0,
即当x≤0时,y=kx+2与g(x)=e-x+2相切即可,
设切点为(a,e-a+2),则函数的导数g′(x)=-e-x
则切线斜率k=-e-a
则切线方程为y-(e-a+2)=-e-a(x-a),
即y=(e-a+2)-e-a(x-a),即y=-e-ax+(a+1)e-a+2,
∵y=kx+2,
∴k=-e-a,(a+1)e-a+2=2,
得(a+1)e-a=0,则a=-1,k=-e,
非正实数k的取值范围是{-e},
故选:B.

点评 本题主要考查函数零点个数的判断和应用,根据函数与方程之间的关系转化为两个函数的交点个数问题,利用数形结合是解决本题的关键.综合性较强,有一定的难度.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.如图,梯形ABCD中:AB∥DC,AB=2DC=10,BD=$\frac{4}{3}$AD=8,PO⊥平面ABCD,O、N分别是AD、AP的中点.
(1)求证:DN∥平面PBC.
(2)若PA与平面ABCD所成的角为$\frac{π}{4}$,且$\frac{PM}{MC}$=$\frac{5}{4}$,求二面角P-AD-M的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=lnx-x+1,x∈(0,+∞),g(x)=x3-3a2x(a>0)
(1)求f(x)的最大值;
(2)若对?x1∈(0,+∞),总存在x2∈[1,2]使得f(x1)≤g(x2)成立,求a的取值范围;
(3)利用(1)的结论,证明不等式($\frac{1}{n}$)n+($\frac{2}{n}$)n+…+($\frac{n}{n}$)n<$\frac{e}{e-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.解不等式|x-2|+|x-1|≥5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知极坐标系的极点在直角坐标系的原点处,极轴与x轴的正半轴重合,直线l的极坐标方程为ρsin(θ+$\frac{π}{4}}$)=$\frac{{3\sqrt{2}}}{2}$,曲线C的参数方程是$\left\{\begin{array}{l}x=cosα\\ y=\sqrt{3}sinα\end{array}$(α是参数).
(I)求直线l及曲线C的直角坐标方程;
(II)求曲线C上的点到直线l的最小距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=ex+ax(a∈R),g(x)=lnx(e为自然对数的底数).
(1)设曲线y=f(x)在x=1处的切线为l,直线l与y=ex+3平行,求a的值;
(2)若对于任意实数x≥0,f(x)>0恒成立,试确定实数a的取值范围;
(3)当a=-1时,函数M(x)=g(x)-f(x)在[1,e]上是否存在极值?若存在,求出极值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数y=x+cosx的单调增区间为[2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$)(k∈Z).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,点D在AB上,DE⊥EB,且AD=2$\sqrt{3}$,AE=6
(1)证明:直线AC与△BDE的外接圆相切;
(2)求EC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$(a+1)x2+bx+c的导函数为f′(x),在区间(-2,0)内任取两个实数a,b,则f′(1)•f′(-1)<0的概率为$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案