分析 求函数的导数,利用f′(1)•f′(-1)<0,求出a,b满足的条件,作出不等式组对应的平面区域,求出对应的面积,利用几何概型的概率公式进行求解即可.
解答
解:∵f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$(a+1)x2+bx+c,
∴f′(x)=x2+(a+1)x+b,
∵f′(1)•f′(-1)<0,
∴(a+b+2)(b-a)<0,
在区间(-2,0)内任取两个实数a,b,
不等式组对应的平面区域如图:
∴则f′(1)•f′(-1)<0的概率为$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.
点评 本题主要考查几何概型的概率公式的概率的计算,根据函数的导数公式求出f′(1)•f′(-1)<0的等价条件是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | (-∞,0] | B. | {-e} | C. | (-∞,-e] | D. | (-e,0] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 2 | C. | 1 | D. | -1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,2)和(3,+∞) | B. | (2,3) | C. | (-1,6) | D. | (-3,-2) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com