分析 (1)圆锥曲线C的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数),利用cos2θ+sin2θ=1,可得普通方程.可得椭圆的左焦点F1(-$\sqrt{3}$,0),又直线l还经过点$(0,-\sqrt{3})$,可得直线l的截距式方程.
(2)直线l的方程与椭圆方程联立化为$5{x}^{2}+8\sqrt{3}x$+8=0,利用|EF|=$\sqrt{(1+1)[({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}]}$即可得出.
解答 解:(1)圆锥曲线C的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数),
利用cos2θ+sin2θ=1,可得普通方程:$\frac{{x}^{2}}{4}+{y}^{2}$=1.
可得椭圆的左焦点F1(-$\sqrt{3}$,0),
又直线l还经过点$(0,-\sqrt{3})$,
可得直线ld的方程为:$\frac{x}{-\sqrt{3}}$+$\frac{y}{-\sqrt{3}}$=1,即x+y+$\sqrt{3}$=0.
(2)联立$\left\{\begin{array}{l}{x+y+\sqrt{3}=0}\\{{x}^{2}+4{y}^{2}=4}\end{array}\right.$,化为$5{x}^{2}+8\sqrt{3}x$+8=0,
∴x1+x2=-$\frac{8\sqrt{3}}{5}$,x1x2=$\frac{8}{5}$.
∴|EF|=$\sqrt{(1+1)[({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}]}$=$\sqrt{2×(\frac{64×3}{25}-4×\frac{8}{5})}$=$\frac{8}{5}$.
点评 本题考查了参数方程化为普通方程、直线截距式、直线与椭圆相交弦长问题、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com