精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=alnx-x+2,其中a≠0.若对于任意的x1∈[1,e],总存在x2∈[1,e],使得f(x1)+f(x2)=4,则实数a=e+1.

分析 通过讨论a的范围,结合函数的单调性找到函数的最值,从而求出a的值.

解答 解:用f(x)max,f(x)min分别表示函数f(x)在[1,e]上的最大值,最小值,
当a≤1且a≠0时,由(Ⅰ)知:在[1,e]上,f(x)是减函数,
所以 f(x)max=f(1)=1;
因为 对任意的x1∈[1,e],x2∈[1,e],f(x1)+f(x2)≤2f(1)=2<4,
所以对任意的x1∈[1,e],不存在x2∈[1,e],使得f(x1)+f(x2)=4;
当1<a<e时,由(Ⅰ)知:在[1,a]上,f(x)是增函数,在[a,e]上,f(x)是减函数,
所以 f(x)max=f(a)=alna-a+2;
因为 对x1=1,?x2∈[1,e],f(1)+f(x2)≤f(1)+f(a)=1+alna-a+2=a(lna-1)+3<3,
所以 对x1=1∈[1,e],不存在x2∈[1,e],使得f(x1)+f(x2)=4;
当a≥e时,令g(x)=4-f(x)(x∈[1,e]),
由(Ⅰ)知:在[1,e]上,f(x)是增函数,进而知g(x)是减函数,
所以 f(x)min=f(1)=1,f(x)max=f(e)=a-e+2,
g(x)max=g(1)=4-f(1),g(x)min=g(e)=4-f(e);
因为 对任意的x1∈[1,e],总存在x2∈[1,e],使得f(x1)+f(x2)=4,即f(x1)=g(x2),
所以$\left\{\begin{array}{l}{f(1)≥g(e)}\\{f(e)≤g(1)}\end{array}\right.$,即$\left\{\begin{array}{l}{f(1)+f(e)≥4}\\{f(e)+f(1)≤4}\end{array}\right.$,
所以 f(1)+f(e)=a-e+3=4,解得a=e+1,
综上所述,实数a的值为e+1.
故答案为:e+1.

点评 本题考查了函数的单调性,函数的最值问题,考查导数的应用,分类讨论思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.如图所示的几何体中,AD⊥平面APB,AD∥BC,AP⊥PB.
(1)求证:平面PAD⊥平面PBC;
(2)若AB=BC=2AD=2AP=2,点Q在线段AB上,且AQ=$\frac{1}{4}$AB,求二面角C-PQ-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知,△ABC内接于圆,延长AB到D点,使得DC=2DB,DC交圆于E点.
(1)求证:AD=2DE;
(2)若AC=DC,求证:DB=BE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知在直角坐标系xOy中,圆锥曲线C的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数),定点A(0,-$\sqrt{3}$),F1,F2是圆锥曲线C的左、右焦点,直线l过点A,F1
(1)求圆锥曲线C及直线l的普通方程;
(2)设直线l与圆锥曲线C交于E,F两点,求弦EF的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=lnx+$\frac{a}{x}$在区间[2,+∞)上单调递增,则a的取值范围为(  )
A.(-∞,2]B.(-∞,2)C.[2,+∞)D.[-2,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图所示,圆O的弦CD垂直于直径AB,垂足为H,HB=2CD,AH=1cm.求弦CD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数y=f(x)(x∈R)导函数为f′(x),f(1)=1,且f′(x)>$\frac{1}{2}$,则不等式2f(x)<x+1的解集为(  )
A.{x|x<1}B.{x|x<-1}C.{x|-1<x<1}D.{x|x<-1或x>1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在平面直角坐标系xOy中,以O为极点,x轴非负半轴为极轴建立极坐标系,取相同的长度单位,已知曲线C的极坐标方程为ρ=2$\sqrt{5}$sinθ,直线l的参数方程为$\left\{\begin{array}{l}{x=3-\frac{\sqrt{2}}{2}t}\\{y=\sqrt{5}+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数).
(Ⅰ)写出曲线C的直角坐标方程和直线l的普通方程.
(Ⅱ)若P(3,$\sqrt{5}$),直线l与曲线C相交于M,N两点,求|PM|+|PN|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=|2x-1|,g(x)=x2-(2+3k)x+2k+1.若方程g[f(x)]=0有3个不同实根,则k的取值范围为$k=-\frac{1}{2}$或k>0.

查看答案和解析>>

同步练习册答案