4£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-\frac{1}{2}t}\\{y=2+\frac{\sqrt{3}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÒÔÔ­µãΪ¼«µã£¬ÒÔxÖáµÄÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñ=$\frac{2}{\sqrt{1+3si{n}^{2}¦È}}$£¬
£¨¢ñ£©ÇóÇúÏßC1µÄÆÕͨ·½³ÌºÍÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÉèµãM£¨0£¬2£©£¬ÇúÏßC1ÓëÇúÏßC2½»ÓÚA£¬BÁ½µã£¬Çó|MA|•|MB|µÄÖµ£®

·ÖÎö £¨¢ñ£©ÔËÓôúÈë·¨£¬ÏûÈ¥t£¬¿ÉµÃÇúÏßC1µÄÆÕͨ·½³Ì£»ÓÉx=¦Ñcos¦È£¬y=¦Ñsin¦È£¬´úÈë¼«×ø±ê·½³Ì£¬¼´¿ÉµÃµ½ËùÇóÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©½«Ö±ÏߵIJÎÊý·½³Ì´úÈëÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£¬ÔËÓòÎÊýµÄ¼¸ºÎÒâÒ壬ÓÉΤ´ï¶¨Àí¿ÉµÃËùÇóÖ®»ý£®

½â´ð ½â£º£¨¢ñ£©ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-\frac{1}{2}t}\\{y=2+\frac{\sqrt{3}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬
ÓÉ´úÈë·¨ÏûÈ¥²ÎÊýt£¬¿ÉµÃÇúÏßC1µÄÆÕͨ·½³ÌΪy=-$\sqrt{3}$x+2£»
ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñ=$\frac{2}{\sqrt{1+3si{n}^{2}¦È}}$£¬
µÃ¦Ñ2=$\frac{4}{1+3si{n}^{2}¦È}$£¬¼´Îª¦Ñ2+3¦Ñ2sin2¦È=4£¬
ÕûÀí¿ÉµÃÇúÏßC2µÄÖ±½Ç×ø±ê·½³ÌΪ$\frac{{x}^{2}}{4}$+y2=1£»
£¨¢ò£©½«$\left\{\begin{array}{l}{x=-\frac{1}{2}t}\\{y=2+\frac{\sqrt{3}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬
´úÈëÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì$\frac{{x}^{2}}{4}$+y2=1µÃ
13t2+32$\sqrt{3}$t+48=0£¬
ÀûÓÃΤ´ï¶¨Àí¿ÉµÃt1•t2=$\frac{48}{13}$£¬
ËùÒÔ|MA|•|MB|=$\frac{48}{13}$£®

µãÆÀ ±¾Ì⿼²é²ÎÊý·½³ÌºÍÆÕͨ·½³ÌµÄ»¥»¯£¬¼«×ø±ê·½³ÌºÍÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯£¬¿¼²éÖ±Ïß²ÎÊý·½³ÌµÄÔËÓã¬ÒÔ¼°Î¤´ï¶¨ÀíµÄÔËÓã¬ÊôÓÚ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªº¯Êýf£¨x£©=x2-2|x|+3£®
£¨1£©Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼äºÍÖµÓò£»
£¨2£©Èô·½³Ìf£¨x£©=kÓÐËĸö½â£¬ÇóʵÊýkµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÈçͼËùʾµÄ¼¸ºÎÌåÖУ¬AD¡ÍÆ½ÃæAPB£¬AD¡ÎBC£¬AP¡ÍPB£®
£¨1£©ÇóÖ¤£ºÆ½ÃæPAD¡ÍÆ½ÃæPBC£»
£¨2£©ÈôAB=BC=2AD=2AP=2£¬µãQÔÚÏß¶ÎABÉÏ£¬ÇÒAQ=$\frac{1}{4}$AB£¬Çó¶þÃæ½ÇC-PQ-DµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßC1£º$\left\{{\begin{array}{l}{x=a+acos¦Õ}\\{y=asin¦Õ}\end{array}}$£¨¦ÕΪ²ÎÊý£¬ÊµÊýa£¾0£©£¬ÇúÏßC2£º$\left\{{\begin{array}{l}{x=bcos¦Õ}\\{y=b+bsin¦Õ}\end{array}}$£¨¦ÕΪ²ÎÊý£¬ÊµÊýb£¾0£©£®ÔÚÒÔOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖáµÄ¼«×ø±êϵÖУ¬ÉäÏßl£º¦È=¦Á£¨¦Ñ¡Ý0£¬0¡Ü¦Á¡Ü$\frac{¦Ð}{2}$£©ÓëC1½»ÓÚO¡¢AÁ½µã£¬ÓëC2½»ÓÚO¡¢BÁ½µã£®µ±¦Á=0ʱ£¬|OA|=1£»µ±¦Á=$\frac{¦Ð}{2}$ʱ£¬|OB|=2£®
£¨¢ñ£©Çóa£¬bµÄÖµ£»
£¨¢ò£©Çó2|OA|2+|OA|•|OB|µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Èçͼ£¬¡ÑOµÄÔ²ÐÄOÔÚRt¡÷ABCµÄÖ±½Ç±ßBCÉÏ£¬AB¡¢AC¶¼ÊÇ¡ÑOµÄÇÐÏߣ¬MÊÇABÓë¡ÑOÏàÇеÄÇе㣬NÊÇ¡ÑOÓëBCµÄ½»µã£®
£¨¢ñ£©Ö¤Ã÷£ºMN¡ÎAO£»
£¨¢ò£©ÈôAC=3£¬MB=2£¬ÇóCN£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªº¯Êýf£¨x£©=$\sqrt{3}$sin¦Øxcos¦Øx-cos2¦Øx+$\frac{3}{2}$£¨¦Ø¡ÊR£©µÄ×îСÕýÖÜÆÚΪ¦Ð£¬ÇÒͼÏó¹ØÓÚÖ±Ïßx=$\frac{¦Ð}{6}$¶Ô³Æ£®
£¨1£©Çóf£¨x£©µÄ½âÎöʽ£»
£¨2£©Èôº¯Êýg£¨x£©=f£¨-x£©£©+a£¨0$¡Üx¡Ü\frac{¦Ð}{2}$£©ÓÐÇÒÖ»ÓÐÒ»¸öÁãµã£¬ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨3£©Èôx1£¬x2ÊÇ£¨2£©Öк¯Êýg£¨x£©µÄÁ½¸ö²»Í¬Áãµã£¬ÇóÖ¤£ºx1+x2=$\frac{2¦Ð}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖª£¬¡÷ABCÄÚ½ÓÓÚÔ²£¬ÑÓ³¤ABµ½Dµã£¬Ê¹µÃDC=2DB£¬DC½»Ô²ÓÚEµã£®
£¨1£©ÇóÖ¤£ºAD=2DE£»
£¨2£©ÈôAC=DC£¬ÇóÖ¤£ºDB=BE£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ô²×¶ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2cos¦È}\\{y=sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬¶¨µãA£¨0£¬-$\sqrt{3}$£©£¬F1£¬F2ÊÇÔ²×¶ÇúÏßCµÄ×ó¡¢ÓÒ½¹µã£¬Ö±Ïßl¹ýµãA£¬F1£®
£¨1£©ÇóÔ²×¶ÇúÏßC¼°Ö±ÏßlµÄÆÕͨ·½³Ì£»
£¨2£©ÉèÖ±ÏßlÓëÔ²×¶ÇúÏßC½»ÓÚE£¬FÁ½µã£¬ÇóÏÒEFµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÔOΪ¼«µã£¬xÖá·Ç¸º°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬È¡ÏàͬµÄ³¤¶Èµ¥Î»£¬ÒÑÖªÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2$\sqrt{5}$sin¦È£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=3-\frac{\sqrt{2}}{2}t}\\{y=\sqrt{5}+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£®
£¨¢ñ£©Ð´³öÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌºÍÖ±ÏßlµÄÆÕͨ·½³Ì£®
£¨¢ò£©ÈôP£¨3£¬$\sqrt{5}$£©£¬Ö±ÏßlÓëÇúÏßCÏཻÓÚM£¬NÁ½µã£¬Çó|PM|+|PN|µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸