精英家教网 > 高中数学 > 题目详情
3.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=1+t}\\{y=a-2t}\end{array}\right.$(t为参数)在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,极轴与x轴的非负半轴重合)中,圆C的方程为ρ=4cosθ.若直线l被圆C截得的弦长为$\sqrt{11}$,求实数a的值.

分析 把参数方程与极坐标方程分别化为直角坐标方程,求出圆心到直线的距离,利用弦长公式即可得出.

解答 解:直线l的参数方程为$\left\{\begin{array}{l}{x=1+t}\\{y=a-2t}\end{array}\right.$(t为参数),
消去参数t可得:直线的直角坐标系方程是:2x+y-a-2=0,
圆C的方程为ρ=4cosθ,即ρ2=4ρcosθ,
直角坐标系方程是:x2+y2=4x,配方为(x-2)2+y2=4,可得圆心(2,0),半径r=2.
设圆心到直线l的距离为d,d=$\sqrt{4-(\frac{\sqrt{11}}{2})^{2}}$=$\frac{\sqrt{5}}{2}$.
又d=$\frac{|4-a-2|}{\sqrt{5}}$=$\frac{|2-a|}{\sqrt{5}}$=$\frac{\sqrt{5}}{2}$,
∴a=2$±\frac{5}{2}$,∴a=$\frac{9}{2}$,或$-\frac{1}{2}$.

点评 本题考查了极坐标化为直角坐标、参数方程化为普通方程、点到直线的距离公式、直线与圆相交弦长问题,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图,在三棱锥P-ABC中,△PAB和△CAB都是以AB为斜边的等腰直角三角形.
(1)证明:AB⊥PC;
(2)若AB=2PC=$\sqrt{2}$,求三棱锥P-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图所示,已知AB为圆O的直径,点D为线段AB上一点,且AD=$\frac{1}{3}$DB,点C为圆O上一点,且BC=$\sqrt{3}$AC.点P在圆O所在平面上的正投影为点D,PD=DB.
(1)再BC上找一点E,使BC⊥平面PDE,并求出$\frac{CE}{BE}$的值;
(2)求平面PAC与平面PBC所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.直角梯形的一条对角线把梯形分成两个三角形,其中一个是边长为30的等边三角形,则这个梯形的中位线长是(  )
A.15B.22.5C.45D.90

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=|x-2|-|x+1|.
(1)解不等式f(x)>1;
(2)当x>0时,函数g(x)=$\frac{a{x}^{2}-x+1}{x}$(a>0)的最小值总大于函数f(x),试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.求函数y=($\frac{1}{2}$)-x2+4x-3单调区间单调减区间为(-∞,2),单调增区间为[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ax2+xlnx+b,(a,b∈R)的图象在(1,f(1))处的切线方程为3x-y-4=0.
(1)求实数a,b的值;
(2)若存在k∈Z,使f(x)>k恒成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x2-2|x|+3.
(1)求函数f(x)的单调区间和值域;
(2)若方程f(x)=k有四个解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图所示的几何体中,AD⊥平面APB,AD∥BC,AP⊥PB.
(1)求证:平面PAD⊥平面PBC;
(2)若AB=BC=2AD=2AP=2,点Q在线段AB上,且AQ=$\frac{1}{4}$AB,求二面角C-PQ-D的余弦值.

查看答案和解析>>

同步练习册答案