分析 (1)连接OC,推导出AC⊥BC,CD⊥AO.PD⊥平面ABC,从而PD⊥CD,CD⊥平面PAB,过D作DE⊥BC,交BC于E,由此能求出结果.
(2)以D为原点,DC为x轴,DB为y轴,DP为z轴,建立空间直角坐标系,利用向量法能求出平面PAC与平面PBC所成的锐二面角的余弦值.
解答
解:(1)连接OC,由AD=$\frac{1}{3}$BD知,点D为AO的中点
又∵AB为圆的直径,∴AC⊥BC
∵$\sqrt{3}$AC=BC,∴∠CAB=60°,
∴△ACO为等边三角形,∴CD⊥AO.
∵点P在圆O所在平面上的正投影为点D,
∴PD⊥平面ABC,又CD?平面ABC,
∴PD⊥CD,PD∩AO=D,
∴CD⊥平面PAB,设AD=1,则BD=3,
∵BC=$\sqrt{3}$AC,∴$\sqrt{9+C{D}^{2}}$=$\sqrt{3}•\sqrt{1+C{D}^{2}}$,解得CD=$\sqrt{3}$,AC=2,BC=2$\sqrt{3}$,
过D作DE⊥BC,交BC于E,连结PE,
则BC⊥平面PDE,
此时Rt△CDE∽Rt△DBE,
∴$\frac{CE}{BE}$=$\frac{\sqrt{3}}{3}$.
(2)以D为原点,DC为x轴,DB为y轴,DP为z轴,建立空间直角坐标系,
P(0,0,3),A(0,-1,0),C($\sqrt{3}$,0,0),B(0,3,0),
$\overrightarrow{PA}$=(0,-1,-3),$\overrightarrow{PB}$=(0,3,-3),$\overrightarrow{PC}$=($\sqrt{3},0,-3$),
设平面PAC的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{PA}•\overrightarrow{n}=-y-3z=0}\\{\overrightarrow{PC}•\overrightarrow{n}=\sqrt{3}x-3z=0}\end{array}\right.$,取x=$\sqrt{3}$,得$\overrightarrow{n}$=($\sqrt{3}$,-3,1),
设平面PBC的法向量$\overrightarrow{m}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{PB}•\overrightarrow{m}=3b-3c=0}\\{\overrightarrow{PC}•\overrightarrow{m}=\sqrt{3}a-3c=0}\end{array}\right.$,取$a=\sqrt{3}$,则$\overrightarrow{m}$=($\sqrt{3},1,1$),
设平面PAC与平面PBC所成的锐二面角为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{1}{\sqrt{13}•\sqrt{5}}$=$\frac{\sqrt{65}}{65}$.
∴平面PAC与平面PBC所成的锐二面角的余弦值为$\frac{\sqrt{65}}{65}$.
点评 本题考查线线垂直的判定、二面角的平面角及求法.二面角的求法:法1、作角(根据定义作二面角的平面角)--证角(符合定义)--求角(解三角形);法2、空间向量法,求得两平面的法向量,再利用向量的数量积公式求夹角的余弦值.
科目:高中数学 来源: 题型:解答题
| 学生 | A | B | C | D | E |
| 总成绩(x) | 482 | 383 | 421 | 364 | 362 |
| 数学成绩(y) | 78 | 65 | 71 | 64 | 61 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com