精英家教网 > 高中数学 > 题目详情
9.已知曲线C的参数方程为:$\left\{\begin{array}{l}{y=sinθ}\\{x=2cosθ}\end{array}\right.$(其中参数θ∈[0,π]),直线l:y=x+b.
(Ⅰ)写出曲线C的普通方程并指出它的轨迹;
(Ⅱ)若曲线C与直线l只有一个公共点,求b的取值范围.

分析 (I)对于曲线C:利用sin2θ+cos2θ=1即可把参数方程化为普通方程,根据θ∈[0,π],可得0≤y≤1,它的轨迹是焦点在x轴上的上半椭圆.
(II)对b分类讨论:当直线l经过点(2,0)时,b=-2,此时直线与椭圆只有一个公共点.当直线l经过点(-2,0)时,b=2,此时直线l与椭圆有两个公共点.当-2≤b<2时,满足直线l与椭圆只有一个公共点.设直线y=x+b与椭圆相切时只有一个公共点.

解答 解:(I)对于曲线C:∵sin2θ+cos2θ=1,∴$\frac{{x}^{2}}{4}+{y}^{2}$=1,∵θ∈[0,π],∴sinθ∈[0,1],∴0≤y≤1,
∴曲线C的普通方程为:$\frac{{x}^{2}}{4}+{y}^{2}$=1,0≤y≤1,它的轨迹是焦点在x轴上的上半椭圆.
(II)当直线l经过点(2,0)时,b=-2,此时直线与椭圆只有一个公共点.当直线l经过点(-2,0)时,b=2,
此时直线l与椭圆有两个公共点.当-2≤b<2时,满足直线l与椭圆只有一个公共点.
设直线y=x+b与椭圆相切,
把y=x+b代入椭圆方程可得:x2+4(x+b)2=4,
化为5x2+8bx+4b2-4=0.
令△=64b2-20(4b2-4)=0,
解得b=$\sqrt{5}$$(-\sqrt{5}舍去)$,此时直线l与椭圆只有一个公共点.
综上可得:b∈[-2,2)∪$\{\sqrt{5}\}$.

点评 本题考查了参数方程化为普通方程用、直线与椭圆相交相切问题,考查了数形结合方法、分类讨论方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.在平面直角坐标系xOy中,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知直线l的参数方程为$\left\{\begin{array}{l}{x=2+\frac{3}{5}t}\\{y=\frac{4}{5}t}\end{array}\right.$(t为参数),抛物线C的极坐标方程为ρsin2θ=2cosθ.
(1)求出直线l的普通方程及抛物线C的直角坐标方程;
(2)设点P(2,0),直线l与抛物线C相交于A,B两点,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在三棱柱ABC-A1B1C1中,A1A=AB,CB⊥A1ABB1
(1)求证:AB1⊥平面A1BC;
(2)若AC=5,BC=3,∠A1AB=60°,求三棱锥C-AA1B的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知集合A={x||x-a|<4},B={x|x2-4x-5>0}
(1)若A∪B=R,求实数a的取值范围.
(2)县否存在实数a,使得A∩B=∅?若存在,则求a的取值范围,否则,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ex-ax-1(a∈R),f′(x)为f(x)的导函数.
(1)若f(x)>xlnx在(0,+∞)内恒成立,求a的取值范围.
(2)若曲线y=f(x)在点(1,f(1))处的切线平行于直线y=ex+m,当x∈(t,t+2)时,其中,-2<t<0,讨论函数g(x)=$\frac{{x}^{2}+3x+3}{f′(x)}$的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图所示,已知AB为圆O的直径,点D为线段AB上一点,且AD=$\frac{1}{3}$DB,点C为圆O上一点,且BC=$\sqrt{3}$AC.点P在圆O所在平面上的正投影为点D,PD=DB.
(1)再BC上找一点E,使BC⊥平面PDE,并求出$\frac{CE}{BE}$的值;
(2)求平面PAC与平面PBC所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系xOy中,已知直线$\left\{{\begin{array}{l}{x=-1+\frac{{\sqrt{5}}}{5}t}\\{y=-1+\frac{{2\sqrt{5}}}{5}t}\end{array}}\right.$(t为参数)与曲线$\left\{{\begin{array}{l}{x=sinθ}\\{y=cos2θ}\end{array}}\right.$(θ为参数)相交于A,B两点,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=|x-2|-|x+1|.
(1)解不等式f(x)>1;
(2)当x>0时,函数g(x)=$\frac{a{x}^{2}-x+1}{x}$(a>0)的最小值总大于函数f(x),试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知cos(α+$\frac{β}{2}$)=$\frac{\sqrt{3}}{3}$,cos($\frac{α}{2}$-β)=$\frac{1}{3}$,其中0<α<$\frac{π}{2}$,$\frac{π}{2}$<β<π.
(1)求tan(2α+β)的值;
(2)求cos(3α-β)的值.

查看答案和解析>>

同步练习册答案