1£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÖ±Ïß$\left\{{\begin{array}{l}{x=-1+\frac{{\sqrt{5}}}{5}t}\\{y=-1+\frac{{2\sqrt{5}}}{5}t}\end{array}}\right.$£¨tΪ²ÎÊý£©ÓëÇúÏß$\left\{{\begin{array}{l}{x=sin¦È}\\{y=cos2¦È}\end{array}}\right.$£¨¦ÈΪ²ÎÊý£©ÏཻÓÚA£¬BÁ½µã£¬ÇóÏß¶ÎABµÄ³¤£®

·ÖÎö Ö±Ïß$\left\{{\begin{array}{l}{x=-1+\frac{{\sqrt{5}}}{5}t}\\{y=-1+\frac{{2\sqrt{5}}}{5}t}\end{array}}\right.$£¨tΪ²ÎÊý£©£¬ÏûÈ¥²ÎÊýt»¯ÎªÆÕͨ·½³Ì£®ÓÉÇúÏß$\left\{{\begin{array}{l}{x=sin¦È}\\{y=cos2¦È}\end{array}}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÀûÓñ¶½Ç¹«Ê½¿ÉµÃy=1-2sin2¦È£¬ÁªÁ¢½â³ö£¬ÔÙÀûÓÃÁ½µãÖ®¼äµÄ¾àÀ빫ʽ¼´¿ÉµÃ³ö£®

½â´ð ½â£ºÖ±Ïß$\left\{{\begin{array}{l}{x=-1+\frac{{\sqrt{5}}}{5}t}\\{y=-1+\frac{{2\sqrt{5}}}{5}t}\end{array}}\right.$£¨tΪ²ÎÊý£©»¯ÎªÆÕͨ·½³Ì£ºy=2x+1£®
ÓÉÇúÏß$\left\{{\begin{array}{l}{x=sin¦È}\\{y=cos2¦È}\end{array}}\right.$£¨¦ÈΪ²ÎÊý£©£¬¿ÉµÃy=1-2sin2¦È=1-2x2£¨-1¡Üx¡Ü1£©£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=2x+1}\\{y=1-2{x}^{2}}\end{array}\right.$£¨-1¡Üx¡Ü1£©£¬½âµÃ$\left\{\begin{array}{l}{x=-1}\\{y=-1}\end{array}\right.$£¬»ò$\left\{\begin{array}{l}{x=0}\\{y=1}\end{array}\right.$£¬
£®¡àA£¨-1£¬-1£©£¬B£¨0£¬1£©£¬
¡à|AB|=$\sqrt{£¨-1-0£©^{2}+£¨-1-1£©^{2}}$=$\sqrt{5}$£®

µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢ÇúÏߵĽ»µã¡¢Á½µãÖ®¼äµÄ¾àÀ빫ʽ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÇúÏßC1£º$\left\{\begin{array}{l}x=cos¦È\\ y=sin¦È\end{array}$£¨¦ÈΪ²ÎÊý£©£¬ÒÔÆ½ÃæÖ±½Ç×ø±êϵxOyµÄÔ­µãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖᣬȡÏàͬµÄµ¥Î»³¤¶È½¨Á¢¼«×ø±êϵ£¬ÒÑÖªÖ±Ïßl£º¦Ñ£¨2cos¦È-sin¦È£©=6£®
£¨1£©½«ÇúÏßC1ÉϵÄËùÓеãµÄºá×ø±êÉ쳤ΪԭÀ´µÄ$\sqrt{3}$±¶£¬×Ý×ø±êÉ쳤ΪԭÀ´µÄ2±¶ºóµÃµ½ÇúÏßC2£¬ÊÔд³öÖ±ÏßlµÄÖ±½Ç×ø±ê·½³ÌºÍÇúÏßC2µÄ²ÎÊý·½³Ì£»
£¨2£©ÔÚÇúÏßC2ÉÏÇóÒ»µãP£¬Ê¹µãPµ½Ö±ÏßlµÄ¾àÀë×î´ó£¬²¢Çó³ö´Ë×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªº¯Êýf£¨x£©=lnx-ax2+£¨2-a£©x£®
£¨1£©Èôº¯Êýf£¨x£©ÔÚ[1£¬+¡Þ£©ÉÏΪ¼õº¯Êý£¬ÇóaµÄȡֵ·¶Î§£»
£¨2£©µ±a=1ʱ£¬g£¨x£©=x2-2x+b£¬µ±x¡Ê[$\frac{1}{2}$£¬2]ʱ£¬f£¨x£©Óëg£¨x£©ÓÐÁ½¸ö½»µã£¬ÇóʵÊýbµÄȡֵ·¶Î§£»
£¨3£©Ö¤Ã÷£º$\frac{2}{1^2}+\frac{3}{2^2}+\frac{4}{3^2}+\frac{5}{4^2}+¡­+\frac{n+1}{n^2}$£¾ln£¨n+1£©£¨?n¡ÊN*£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªÇúÏßCµÄ²ÎÊý·½³ÌΪ£º$\left\{\begin{array}{l}{y=sin¦È}\\{x=2cos¦È}\end{array}\right.$£¨ÆäÖвÎÊý¦È¡Ê[0£¬¦Ð]£©£¬Ö±Ïßl£ºy=x+b£®
£¨¢ñ£©Ð´³öÇúÏßCµÄÆÕͨ·½³Ì²¢Ö¸³öËüµÄ¹ì¼££»
£¨¢ò£©ÈôÇúÏßCÓëÖ±ÏßlÖ»ÓÐÒ»¸ö¹«¹²µã£¬ÇóbµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Èçͼ£¬ËÄÀâ×¶P-ABCDÖУ¬µ×ÃæABCDÊDZ߳¤Îª2µÄÁâÐΣ¬¡ÏABC=60¡ã£¬PA¡ÍPB£¬PC=2£®
£¨¢ñ£©ÇóÖ¤£ºÆ½ÃæPAB¡ÍÆ½ÃæABCD£»
£¨¢ò£©ÈôPA=PB£¬Çó¶þÃæ½ÇA-PC-DµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÒÑÖªº¯Êýf£¨x£©=2lnx-x2+aÔÚ[$\frac{1}{e}$£¬e]ÉÏÓÐÁ½¸öÁãµã£¬ÔòʵÊýaµÄȡֵ·¶Î§Îª£¨1£¬2+$\frac{1}{{e}^{2}}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬¹ýµãP£¨3£¬1£©µÄÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=3+tcos¦Á}\\{y=1+tsin¦Á}\end{array}}\right.$£¨tΪ²ÎÊý£¬¦ÁΪlµÄÇãб½Ç£©£®ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£®ÇúÏßC1£º¦Ñ=2cos¦È£¬ÇúÏßC2£º¦Ñ=4cos¦È£®
£¨¢ñ£©ÈôÖ±ÏßlÓëÇúÏßC1ÓÐÇÒ½öÓÐÒ»¸ö¹«¹²µã£¬ÇóÖ±ÏßlµÄ¼«×ø±ê·½³Ì£»
£¨¢ò£©ÈôÖ±ÏßlÓëÇúÏßC1½»ÓÚ²»Í¬Á½µãC¡¢D£¬ÓëC2½»ÓÚ²»Í¬Á½µãA¡¢B£¬ÕâËĵã´Ó×óÖÁÓÒÒÀ´ÎΪB¡¢D¡¢C¡¢A£¬Çó|AC|-|BD|µÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÒÑ֪ʵÊýx£¬y£¬Âú×ã$\left\{\begin{array}{l}{2x+y-4¡Ü0}\\{x-y+1¡Ý0}\\{x+2y-2¡Ý0}\end{array}\right.$£¬Ôòz=-$\sqrt{2}$x+yµÄ×î´óÖµÊÇ£¨¡¡¡¡£©
A£®2-$\sqrt{2}$B£®1C£®2$\sqrt{2}$D£®1+$\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®Èôº¯Êýf£¨x£©=loga2-1£¨2x+1£©ÔÚ£¨-$\frac{1}{2}$£¬0£©ÉϺãÓÐf£¨x£©£¾0£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨$-\sqrt{2}$£¬-1£©¡È£¨1£¬$\sqrt{2}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸