精英家教网 > 高中数学 > 题目详情
10.已知实数x,y,满足$\left\{\begin{array}{l}{2x+y-4≤0}\\{x-y+1≥0}\\{x+2y-2≥0}\end{array}\right.$,则z=-$\sqrt{2}$x+y的最大值是(  )
A.2-$\sqrt{2}$B.1C.2$\sqrt{2}$D.1+$\sqrt{2}$

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合进行求解即可.

解答 解:作出不等式组对应的平面区域如图:
由z=-$\sqrt{2}$x+y得y=$\sqrt{2}$x+z,
平移直线y=$\sqrt{2}$x+z,
由图象知当直线y=$\sqrt{2}$x+z经过点B时,
直线的截距最大,此时z最大,
由$\left\{\begin{array}{l}{x-y+1=0}\\{x+2y-2=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=0}\\{y=1}\end{array}\right.$,即B(0,1),
此时z=-$\sqrt{2}$x+y=1,
故选:B.

点评 本题主要考查线性规划的应用,根据目标函数的几何意义,结合数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.如图,在三棱柱ABC-A1B1C1中,A1A=AB,CB⊥A1ABB1
(1)求证:AB1⊥平面A1BC;
(2)若AC=5,BC=3,∠A1AB=60°,求三棱锥C-AA1B的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系xOy中,已知直线$\left\{{\begin{array}{l}{x=-1+\frac{{\sqrt{5}}}{5}t}\\{y=-1+\frac{{2\sqrt{5}}}{5}t}\end{array}}\right.$(t为参数)与曲线$\left\{{\begin{array}{l}{x=sinθ}\\{y=cos2θ}\end{array}}\right.$(θ为参数)相交于A,B两点,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=|x-2|-|x+1|.
(1)解不等式f(x)>1;
(2)当x>0时,函数g(x)=$\frac{a{x}^{2}-x+1}{x}$(a>0)的最小值总大于函数f(x),试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}x=acosφ\\ y=bsinφ\end{array}$(a>b>0,φ为参数),且曲线C上的点M(2,$\sqrt{3}$)对应的参数φ=$\frac{π}{3}$,以O为极点,x轴的正半轴为极轴建立极坐标系.
(1)求曲线C的普通方程;
(2)若A(ρ1,θ),B(ρ2,θ+$\frac{π}{2}$)是曲线C上的两点,求$\frac{1}{ρ_1^2}$+$\frac{1}{ρ_2^2}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ax2+xlnx+b,(a,b∈R)的图象在(1,f(1))处的切线方程为3x-y-4=0.
(1)求实数a,b的值;
(2)若存在k∈Z,使f(x)>k恒成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若x0是方程2x=$\frac{1}{x}$的解,则x0∈(  )
A.(0.1,0.2)B.(0.3,0.4)C.(0.5,0.7)D.(0.9,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知cos(α+$\frac{β}{2}$)=$\frac{\sqrt{3}}{3}$,cos($\frac{α}{2}$-β)=$\frac{1}{3}$,其中0<α<$\frac{π}{2}$,$\frac{π}{2}$<β<π.
(1)求tan(2α+β)的值;
(2)求cos(3α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在三棱柱ABC-A1B1C1中,平面ABB1A1⊥平面BCC1B1,AB⊥BB1,AB=BC=2,BB1=4,∠BCC1=60°.
(I)求证:C1B⊥AC;
(Ⅱ)求二面角A-B1C-B的余弦值.

查看答案和解析>>

同步练习册答案