精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=ax2+xlnx+b,(a,b∈R)的图象在(1,f(1))处的切线方程为3x-y-4=0.
(1)求实数a,b的值;
(2)若存在k∈Z,使f(x)>k恒成立,求k的最大值.

分析 (1)求出函数的导数,根据f′(1)=3,f(1)=-1,求出a,b的值即可;(2)求出f(x)的导数,求出函数f(x)的单调性,从而求出k的最大值即可.

解答 解:(1)f′(x)=2ax+lnx+1,f′(1)=2a+1,依题意得f′(1)=3,∴a=1
又f(1)=-1,∴a+b=-1,∴b=-2综上:a=1,b=-2…(5分)
(2)∵f′(x)=2x+lnx+1,设g(x)=2x+lnx+1,${g^/}(x)=2+\frac{1}{x}$,…(5分)
∵x∈(0,+∞),g′(x)>0,$g(\frac{1}{e^2})=\frac{2}{e^2}-1<0$,
$g(\frac{1}{2})=2-ln2>0$,$?{x_0}∈(0,\frac{1}{2})$,g(x0)=0…(7分);
$x∈(0,{x_0}),g(x)<0,{f^/}(x)<0$,f(x)是减函数;
$x∈({x_0},+∞),g(x)>0,{f^/}(x)>0$,f(x)是增函数;
∴$x={x_0},f{(x)_{min}}=f({x_0})={x_0}^2+{x_0}ln{x_0}-2$,…(9分)
又2x0+lnx0+1=0,∴lnx0=-2x0-1,
$f({x_0})=-{x_0}^2-{x_0}-2=-{({x_0}+\frac{1}{2})^2}-\frac{7}{4}$,
∵${x_0}∈(0,\frac{1}{2})$,∴$f({x_0})∈(-\frac{11}{4},-2)$,…(10分)
∴f(x)>k恒成立,
所以$k≤-\frac{11}{4}$…(11分)
又k∈Z,所以kmax=-3…(12分)

点评 本题考查了函数的单调性问题,考查导数的应用以及曲线的切线方程问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.设椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)外一点P(x0,y0),求证:方程($\frac{{x}_{0}^{2}}{{a}^{2}}$+$\frac{{y}_{0}^{2}}{{b}^{2}}$-1)($\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$-1)=($\frac{{x}_{0}x}{{a}^{2}}$+$\frac{{y}_{0}y}{{b}^{2}}$-1)2表示过点P的椭圆的两条切线.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=2lnx-x2+a在[$\frac{1}{e}$,e]上有两个零点,则实数a的取值范围为(1,2+$\frac{1}{{e}^{2}}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=1+t}\\{y=a-2t}\end{array}\right.$(t为参数)在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,极轴与x轴的非负半轴重合)中,圆C的方程为ρ=4cosθ.若直线l被圆C截得的弦长为$\sqrt{11}$,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知实数x,y,满足$\left\{\begin{array}{l}{2x+y-4≤0}\\{x-y+1≥0}\\{x+2y-2≥0}\end{array}\right.$,则z=-$\sqrt{2}$x+y的最大值是(  )
A.2-$\sqrt{2}$B.1C.2$\sqrt{2}$D.1+$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=lnx-x+1,x∈(0,+∞),g(x)=x3-3a2x(a>0)
(1)求f(x)的最大值;
(2)若对?x1∈(0,+∞),总存在x2∈[1,2]使得f(x1)≤g(x2)成立,求a的取值范围;
(3)利用(1)的结论,证明不等式($\frac{1}{n}$)n+($\frac{2}{n}$)n+…+($\frac{n}{n}$)n<$\frac{e}{e-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=alnx+$\frac{2x-1}{x}$(a∈R),g(x)=x2emx(m∈R),e=2.71828…).
(1)若函数f(x)在x=2处的切线与直线4x-y=0垂直,求函数f(x)的单调区间;
(2)若a>0,且m∈[-2,-1],求证:对任意x1、x2∈[1,2],f(x1)≥g(x2)恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知极坐标系的极点在直角坐标系的原点处,极轴与x轴的正半轴重合,直线l的极坐标方程为ρsin(θ+$\frac{π}{4}}$)=$\frac{{3\sqrt{2}}}{2}$,曲线C的参数方程是$\left\{\begin{array}{l}x=cosα\\ y=\sqrt{3}sinα\end{array}$(α是参数).
(I)求直线l及曲线C的直角坐标方程;
(II)求曲线C上的点到直线l的最小距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图是正方体的表面展开图,则图中的直线AB,CD在原正方体中是(  )
A.平行B.相交成60°角C.异面成60°角D.异面垂直

查看答案和解析>>

同步练习册答案