精英家教网 > 高中数学 > 题目详情
3.设椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)外一点P(x0,y0),求证:方程($\frac{{x}_{0}^{2}}{{a}^{2}}$+$\frac{{y}_{0}^{2}}{{b}^{2}}$-1)($\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$-1)=($\frac{{x}_{0}x}{{a}^{2}}$+$\frac{{y}_{0}y}{{b}^{2}}$-1)2表示过点P的椭圆的两条切线.

分析 设经过点P的椭圆的切线方程为:y-y0=k(x-x0),把y=y0+kx-kx0,代入椭圆方程可得:b2x2+a2$(kx+{y}_{0}-k{x}_{0})^{2}$=a2b2,展开可得△=0,化为:$({a}^{2}-{x}_{0}^{2}){k}^{2}$+2x0y0k+${b}^{2}-{y}_{0}^{2}$=0,把k=$\frac{y-{y}_{0}}{x-{x}_{0}}$(x≠x0)代入上式化简整理即可得出.

解答 证明:设经过点P的椭圆的切线方程为:y-y0=k(x-x0),
把y=y0+kx-kx0,代入椭圆方程可得:b2x2+a2$(kx+{y}_{0}-k{x}_{0})^{2}$=a2b2
展开为:(b2+a2k2)x2+2a2k(y0-kx0)x+${a}^{2}({y}_{0}-k{x}_{0})^{2}$-a2b2=0,
∵直线与椭圆相切,∴△=$4{a}^{4}{k}^{2}({y}_{0}-k{x}_{0})^{2}$-4(b2+a2k2)[${a}^{2}({y}_{0}-k{x}_{0})^{2}$-a2b2]=0,
化为:$({a}^{2}-{x}_{0}^{2}){k}^{2}$+2x0y0k+${b}^{2}-{y}_{0}^{2}$=0,
把k=$\frac{y-{y}_{0}}{x-{x}_{0}}$(x≠x0)代入上式可得:化为:$({a}^{2}-{x}_{0}^{2})$×$(\frac{y-{y}_{0}}{x-{x}_{0}})^{2}$+2x0y0×$\frac{y-{y}_{0}}{x-{x}_{0}}$+${b}^{2}-{y}_{0}^{2}$=0,
化简整理即可得:方程($\frac{{x}_{0}^{2}}{{a}^{2}}$+$\frac{{y}_{0}^{2}}{{b}^{2}}$-1)($\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$-1)=($\frac{{x}_{0}x}{{a}^{2}}$+$\frac{{y}_{0}y}{{b}^{2}}$-1)2表示过点P的椭圆的两条切线.

点评 本题考查了直线与椭圆相切的性质、一元二次方程的实数根与判别式的关系,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.设P是曲线$\left\{\begin{array}{l}x=\frac{{\sqrt{2}}}{2}secθ\\ y=tanθ\end{array}\right.$(θ为参数)上的一动点,O为坐标原点,M为线段OP的中点,则点M的轨迹的普通方程为8x2-4y2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知直线l的参数方程为$\left\{{\begin{array}{l}{x=-1-\frac{{\sqrt{2}}}{2}t}\\{y=\frac{{\sqrt{2}}}{2}t}\end{array}$(t为参数),点P是曲线$\left\{{\begin{array}{l}{x=1+2cosα}\\{y=2+2sinα}\end{array}}$(α为参数)上的任一点,则点P到直线l距离的最小值为$2\sqrt{2}$-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在三棱锥P-ABC中,△PAB和△CAB都是以AB为斜边的等腰直角三角形.
(1)证明:AB⊥PC;
(2)若AB=2PC=$\sqrt{2}$,求三棱锥P-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在三棱柱ABC-A1B1C1中,A1A=AB,CB⊥A1ABB1
(1)求证:AB1⊥平面A1BC;
(2)若AC=5,BC=3,∠A1AB=60°,求三棱锥C-AA1B的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在路旁某处,有电线杆15根,某人沿路的一方每次运一根放到路边,然后沿原路返回,再运第2根、第3根,…,直到全部运完返回原地,如果他第一根是运放到距原处50米处,以后的每一根比前一根要多运40米,此人共走路多少米?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知集合A={x||x-a|<4},B={x|x2-4x-5>0}
(1)若A∪B=R,求实数a的取值范围.
(2)县否存在实数a,使得A∩B=∅?若存在,则求a的取值范围,否则,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图所示,已知AB为圆O的直径,点D为线段AB上一点,且AD=$\frac{1}{3}$DB,点C为圆O上一点,且BC=$\sqrt{3}$AC.点P在圆O所在平面上的正投影为点D,PD=DB.
(1)再BC上找一点E,使BC⊥平面PDE,并求出$\frac{CE}{BE}$的值;
(2)求平面PAC与平面PBC所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ax2+xlnx+b,(a,b∈R)的图象在(1,f(1))处的切线方程为3x-y-4=0.
(1)求实数a,b的值;
(2)若存在k∈Z,使f(x)>k恒成立,求k的最大值.

查看答案和解析>>

同步练习册答案