精英家教网 > 高中数学 > 题目详情
8.在路旁某处,有电线杆15根,某人沿路的一方每次运一根放到路边,然后沿原路返回,再运第2根、第3根,…,直到全部运完返回原地,如果他第一根是运放到距原处50米处,以后的每一根比前一根要多运40米,此人共走路多少米?

分析 由题意可得,该人走过的路程构成以100为首项,以80为公差的等差数列,然后代入等差数列的前n项和公式得答案.

解答 解:由题意可得,该人走过的路程构成以100为首项,以80为公差的等差数列,
运完所有线杆所走的路程,应是等差数列的前15项和.
则${S}_{15}=15×100+\frac{15×(15-1)×80}{2}=9900$(米).
答:此人共走路9900米.

点评 本题考查等差数列的前n项和,关键是对题意的理解,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.如图,四边形BCDE为矩形,平面ABC⊥平面BCDE,AC⊥BC,AC=CD=$\frac{1}{2}$BC=2,F是AD的中点.
(1)求证:AB∥平面CEF;
(2)求点A到平面CEF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{1-{a}^{2}}$=1的焦点在x轴上.
(1)若椭圆E的焦距为1,求椭圆E的方程;
(2)设F1,F2分别是椭圆E的左、右焦点,P为椭圆E上第一象限内的点,直线F2P交y轴于点Q,并且F1P⊥F1Q.证明:当a变化时,点P在定直线x+y=1上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=t-3}\\{y=\sqrt{3}t}\end{array}\right.$(t为参数),以直角坐标系xOy中的原点O为极点,x轴的非负半轴为极轴,圆C的极坐标方程为ρ2-4ρcosθ+3=0.
(1)求l的普通方程及C的直角坐标方程;
(2)P为圆C上的点,求P到l的距离的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)外一点P(x0,y0),求证:方程($\frac{{x}_{0}^{2}}{{a}^{2}}$+$\frac{{y}_{0}^{2}}{{b}^{2}}$-1)($\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$-1)=($\frac{{x}_{0}x}{{a}^{2}}$+$\frac{{y}_{0}y}{{b}^{2}}$-1)2表示过点P的椭圆的两条切线.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.不等式log2(-x)<x+1的解集为(-1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=(2-a)lnx+2ax+$\frac{1}{x}$,(a∈R),函数h(x)=px-$\frac{p+2e-1}{x}$(其中e=2.718…).
(1)求f(x)的单调区间;
(2)若f(x)在x=1处的切线的倾斜角为$\frac{π}{4}$,在区间[1,e]至少存在一个x0,使得h(x0)>f(x0)成立,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,梯形ABCD中:AB∥DC,AB=2DC=10,BD=$\frac{4}{3}$AD=8,PO⊥平面ABCD,O、N分别是AD、AP的中点.
(1)求证:DN∥平面PBC.
(2)若PA与平面ABCD所成的角为$\frac{π}{4}$,且$\frac{PM}{MC}$=$\frac{5}{4}$,求二面角P-AD-M的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=lnx-x+1,x∈(0,+∞),g(x)=x3-3a2x(a>0)
(1)求f(x)的最大值;
(2)若对?x1∈(0,+∞),总存在x2∈[1,2]使得f(x1)≤g(x2)成立,求a的取值范围;
(3)利用(1)的结论,证明不等式($\frac{1}{n}$)n+($\frac{2}{n}$)n+…+($\frac{n}{n}$)n<$\frac{e}{e-1}$.

查看答案和解析>>

同步练习册答案