精英家教网 > 高中数学 > 题目详情
13.不等式log2(-x)<x+1的解集为(-1,0).

分析 由题意画出图形,由图形求得不等式log2(-x)<x+1的解集.

解答 解:由-x>0,得x<0,
作出函数y=log2(-x)与函数y=x+1的图象如图:

由图可知,不等式log2(-x)<x+1的解集为(-1,0).
故答案为:(-1,0).

点评 本题考查对数不等式的解法,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知点P在曲线C:$\left\{\begin{array}{l}{x=4cosθ}\\{y=3sinθ}\\{\;}\end{array}\right.$(θ为参数)上,直线 l:$\left\{\begin{array}{l}{x=3+\frac{\sqrt{2}}{2}t}\\{y=-3+\frac{\sqrt{2}}{2}t}\\{\;}\end{array}\right.$(t为参数),求P到直线l距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=x3+3ax2+3x+1,当x∈[2,+∞),f(x)≥0恒成立,则实数a的取值范围是[-$\frac{5}{4}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,三棱柱ABC-A1B1C1的侧面AA1B1B为正方形,侧面BB1C1C为菱形,∠CBB1=60°,AB⊥B1C.
(Ⅰ)求证:平面AA1B1B⊥平面BB1C1C;
(Ⅱ)若AB=2,E为BC的中点,求异面直线B1E与AC1所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在路旁某处,有电线杆15根,某人沿路的一方每次运一根放到路边,然后沿原路返回,再运第2根、第3根,…,直到全部运完返回原地,如果他第一根是运放到距原处50米处,以后的每一根比前一根要多运40米,此人共走路多少米?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.百钱买百鸡问题:用100元钱买100只鸡,公鸡每只5元,母鸡每只3元,小鸡3只1元,问公鸡、母鸡、小鸡各买多少只?根据题写出算法及程序.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为梯形,AB∥DC,AB⊥BC,AB=BC=PA=1,CD=2,点E在棱PB上,且PE=2EB.
(1)求证:PD∥平面EAC;
(2)求二面角A-EC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若函数f(x)满足$f(x)+1=\frac{1}{f(x+1)}$,当x∈[0,1]时,f(x)=x.若在区间(-1,1]内,g(x)=f(x)-mx-2m有两个零点,则实数m的取值范围是(  )
A.0<m<$\frac{1}{3}$B.0<m≤$\frac{1}{3}$C.$\frac{1}{3}$<m<1D.$\frac{1}{3}$<m≤1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知a为实数,f(x)=x3+$\frac{1}{2}$ax2-6x+4.
(1)当a=-3时,求f(x)在[-2,3]上的最大值和最小值;
(2)若f(x)在[-1,1]上单调递减,求a的取值范围.

查看答案和解析>>

同步练习册答案