分析 (1)连结AC,BD,交于点O,连结OE,推导出△AOB∽△DOC,从而$\frac{BE}{PE}$=$\frac{BO}{DO}$,进而OE∥PD,由此能证明PD∥平面EAC.
(2)取CD中点F,连结AF,以A为原点,AF为x轴,AB为y轴,AP为z轴,建立空间直角坐标系,利用向量法能求出二面角A-EC-B的余弦值.
解答
证明:(1)连结AC,BD,交于点O,连结OE
∵底面ABCD为梯形,AB∥DC,AB=BC=PA=1,CD=2,
∴△AOB∽△DOC,∴$\frac{OB}{DO}$=$\frac{AB}{DC}$=$\frac{1}{2}$,
∵点E在棱PB上,且PE=2EB,
∴$\frac{BE}{PE}$=$\frac{BO}{DO}$,∴OE∥PD,
∵PD?平面AEC,OE?平面AEC,
∴PD∥平面EAC.
(2)取CD中点F,连结AF,
∵在四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为梯形,
AB∥DC,AB⊥BC,AB=BC=PA=1,CD=2,
∴PA⊥AC,四边形ABCF是正方形,
以A为原点,AF为x轴,AB为y轴,AP为z轴,建立空间直角坐标系,
A(0,0,0),C(1,1,0),E($\frac{2}{3}$,0,$\frac{1}{3}$),B(0,1,0),
$\overrightarrow{AC}$=(1,1,0),$\overrightarrow{AE}$=($\frac{2}{3},0,\frac{1}{3}$),$\overrightarrow{BE}$=($\frac{2}{3},-1,\frac{1}{3}$),$\overrightarrow{BC}$=(-1,0,0),
设平面AEC的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AC}=x+y=0}\\{\overrightarrow{n}•\overrightarrow{AE}=\frac{2}{3}x+\frac{1}{3}z=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,-1,-2),
设平面BEC的法向量$\overrightarrow{m}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{BE}=\frac{2}{3}a-b+\frac{1}{3}c=0}\\{\overrightarrow{m}•\overrightarrow{BC}=-a=0}\end{array}\right.$,取b=1,得$\overrightarrow{m}$=(0,1,3),
设二面角A-EC-B的平面角为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{7}{\sqrt{6}•\sqrt{10}}$=$\frac{7\sqrt{15}}{30}$.
∴二面角A-EC-B的余弦值为$\frac{7\sqrt{15}}{30}$.
点评 本题考查线面平行的证明,考查二面角的求法,是中档题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用
科目:高中数学 来源: 题型:选择题
| A. | 1或2 | B. | 2 | C. | 1或0 | D. | 0或1或2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com