精英家教网 > 高中数学 > 题目详情
3.已知点P在曲线C:$\left\{\begin{array}{l}{x=4cosθ}\\{y=3sinθ}\\{\;}\end{array}\right.$(θ为参数)上,直线 l:$\left\{\begin{array}{l}{x=3+\frac{\sqrt{2}}{2}t}\\{y=-3+\frac{\sqrt{2}}{2}t}\\{\;}\end{array}\right.$(t为参数),求P到直线l距离的最小值.

分析 求出直线的普通方程,利用点到直线的距离公式,通过三角函数的有界性求解最小值.

解答 解:直线 l:$\left\{\begin{array}{l}{x=3+\frac{\sqrt{2}}{2}t}\\{y=-3+\frac{\sqrt{2}}{2}t}\\{\;}\end{array}\right.$(t为参数),的普通方程为:x-y-6=0.
P到直线l距离为:$\frac{|4cosθ-3sinθ-6|}{\sqrt{2}}$=$\frac{|5cos(θ+α)-6|}{\sqrt{2}}$,其中tanα=$\frac{3}{4}$.
当cos(θ+α)=1时,表达式取得最小值:$\frac{\sqrt{2}}{2}$.

点评 本题考查点到直线的距离公式以及参数方程的应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知集合A={x|-1<x<5,x∈Z},B={y|y=ln(e-x2)},则A∩B=(  )
A.(-1,1]B.{0,1}C.(-1,$\sqrt{e}$]D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,三棱台ABC-DEF中,BE⊥底面DEF,AB=BE=$\frac{1}{2}$DE=1,∠ABC=90°.
(1)求证:AD⊥平面AEF;
(2)若二面角E-AC-F的正弦值为$\frac{2\sqrt{2}}{3}$,求EF.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)=$\frac{sinx•cosx}{1+sinx+cosx}$的最大值为(  )
A.-$\sqrt{3}$-1B.$\frac{\sqrt{2}-1}{2}$C.$\frac{-\sqrt{2}-1}{2}$D.$\frac{\sqrt{3}-1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,四边形BCDE为矩形,平面ABC⊥平面BCDE,AC⊥BC,AC=CD=$\frac{1}{2}$BC=2,F是AD的中点.
(1)求证:AB∥平面CEF;
(2)求点A到平面CEF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知数列{an},满足a1=1,3(a1+a2+a3+…+an)=(n+2)an对任意正整数n都成立,则a4=10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知a∈R,若函数f(x)=$\frac{1}{2}$x2-|x-2a|有3个或4个零点,则函数g(x)=4ax2+2x+1的零点个数为(  )
A.1或2B.2C.1或0D.0或1或2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.不等式$\frac{3{x}^{2}+2x+2}{{x}^{2}+x+1}$≥m对任意实数x都成立,则实数m的取值范围是(  )
A.m≤2B.m<2C.m≤3D.m<3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.不等式log2(-x)<x+1的解集为(-1,0).

查看答案和解析>>

同步练习册答案