精英家教网 > 高中数学 > 题目详情
8.已知集合A={x|-1<x<5,x∈Z},B={y|y=ln(e-x2)},则A∩B=(  )
A.(-1,1]B.{0,1}C.(-1,$\sqrt{e}$]D.{0,1,2}

分析 例举出A中的整数解确定出A,求出B中y的范围确定出B,找出两集合的交集即可.

解答 解:∵A={x|-1<x<5,x∈Z}={0,1,2,3,4},B={y|y=ln(e-x2)}={y|y≤1},
∴A∩B={0,1},
故选:B.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知点P是椭圆C:$\frac{{x}^{2}}{a^2}$+y2=1上一动点.以原点O为极点,x轴正半轴为极轴建立极坐标系,直线l过点M(2,$\frac{π}{4}$),且与极轴所成的角为$\frac{3π}{4}$.
(1)写出直线 l的极坐标方程和椭圆C的参数方程.
(2)求出点P到直线l的距离的最小值,并求出对应点P的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知圆C:x2+(y-b)2=r2(r>0)与直线l:x+y-2=0相切于点P(1,1).
(Ⅰ)求圆C的方程;
(Ⅱ)若点M(-2,-2),点Q为圆C上的一个动点,求$\overrightarrow{PQ}•\overrightarrow{MQ}$的最小值;
(Ⅲ)过点P作两条相异直线与圆C相交于点A、B,且直线PA、PB的倾斜角互补,试判断直线CP与直线AB是否平行?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知直线l经过点P(1,2),倾斜角α=$\frac{π}{3}$.
(I)写出直线l的参数方程;
(II)设l与圆x2+y2=2相交与两点A,B,求点P到A,B两点的距离之积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在某一周期内的图象时,列表并填入了部分数据,如表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x$\frac{π}{12}$$\frac{7π}{12}$
Asin(ωx+φ)02-20
(1)请将上表数据补充完整,并直接写出函数f(x)的解析式;
(2)若关于x的方程|f(x)|=m在[-$\frac{π}{2}$,$\frac{π}{6}$]上有两个不相等的实数根,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=ax3+x2(a∈R)在x=-2处取得极值,则a的值为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图是100名学生某次数学测试成绩(单位:分)的频率分布直方图,则测试成绩在区间[50,70)中的学生人数是(  )
A.30B.25C.22D.20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图所示,PA为半径等于2的圆O的切线,A为切点,PO交圆O于B,C两点,$PA=\sqrt{5}$,∠BAC的角平分线与BC交于点D.
(1)求证AB•PC=PA•AC;(2)求$\frac{CD}{BD}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知点P在曲线C:$\left\{\begin{array}{l}{x=4cosθ}\\{y=3sinθ}\\{\;}\end{array}\right.$(θ为参数)上,直线 l:$\left\{\begin{array}{l}{x=3+\frac{\sqrt{2}}{2}t}\\{y=-3+\frac{\sqrt{2}}{2}t}\\{\;}\end{array}\right.$(t为参数),求P到直线l距离的最小值.

查看答案和解析>>

同步练习册答案