精英家教网 > 高中数学 > 题目详情
19.已知圆C:x2+(y-b)2=r2(r>0)与直线l:x+y-2=0相切于点P(1,1).
(Ⅰ)求圆C的方程;
(Ⅱ)若点M(-2,-2),点Q为圆C上的一个动点,求$\overrightarrow{PQ}•\overrightarrow{MQ}$的最小值;
(Ⅲ)过点P作两条相异直线与圆C相交于点A、B,且直线PA、PB的倾斜角互补,试判断直线CP与直线AB是否平行?并说明理由.

分析 (Ⅰ)由题意得$\left\{{\begin{array}{l}{1+{{(1-b)}^2}={r^2}}\\{\frac{1-b}{1-0}=1}\end{array}}\right.$,解出即可得出.
(Ⅱ)设Q(x,y),则$\overrightarrow{PQ}=(x-1,y-1),\overrightarrow{MQ}=(x+2,y+2)$,利用数量积运算性质及其圆的方程即可得出.$\overrightarrow{PQ}•\overrightarrow{MQ}$=x+y-2,记x+y=t,则y=-x+t,联立$\left\{{\begin{array}{l}{{x^2}+{y^2}=2}\\{y=-x+t}\end{array}}\right.$,得2x2-2tx+t2-2=0,利用△≥0,解出即可得出.
(Ⅲ)由过点P可以作两条不同直线AP,BP,且两条直线的倾斜角互补,可得两条直线的斜率存在且不为0.
设直线AP:y-1=k(x-1),则直线BP:y-1=-k(x-1),设点A(x1,y1),B(x2,y2),(x1≠x2).联立得(k2+1)x2-2k(k-1)x+k2-2k-1=0,利用根与系数的关系可得坐标,再利用斜率计算公式即可得出.

解答 解:(Ⅰ)由题意得$\left\{{\begin{array}{l}{1+{{(1-b)}^2}={r^2}}\\{\frac{1-b}{1-0}=1}\end{array}}\right.$,解得$\left\{{\begin{array}{l}{b=0}\\{{r^2}=2}\end{array}}\right.$,
∴圆C的方程为x2+y2=2.
(Ⅱ)设Q(x,y),则$\overrightarrow{PQ}=(x-1,y-1),\overrightarrow{MQ}=(x+2,y+2)$,
∴$\overrightarrow{PQ}•\overrightarrow{MQ}$=(x-1)(x+2)+(y-1)(y+2)=x2+y2+x+y-4=x+y-2,
记x+y=t,则y=-x+t,由$\left\{{\begin{array}{l}{{x^2}+{y^2}=2}\\{y=-x+t}\end{array}}\right.$,得2x2-2tx+t2-2=0,
∵方程有实根,∴△=4t2-4×2×(t2-2)=4(4-t2)≥0,
解不等式得-2≤t≤2,∴当t=-2时,x+y取最小值-2,
∴$\overrightarrow{PQ}•\overrightarrow{MQ}$的最小值为-4.
(Ⅲ)∵过点P可以作两条不同直线AP,BP,且两条直线的倾斜角互补,∴两条直线的斜率存在且不为0.
设直线AP:y-1=k(x-1),则直线BP:y-1=-k(x-1),设点A(x1,y1),B(x2,y2),(x1≠x2).
由$\left\{{\begin{array}{l}{y-1=k(x-1)}\\{{x^2}+{y^2}=2}\end{array}}\right.$,得(k2+1)x2-2k(k-1)x+k2-2k-1=0,
方程的解是点A、P的横坐标,于是1+${x_1}=\frac{2k(k-1)}{{{k^2}+1}}$,则${x_1}=\frac{{{k^2}-2k-1}}{{{k^2}+1}}$;
同理得${x_2}=\frac{{{k^2}+2k-1}}{{{k^2}+1}}$,于是${x_1}+{x_2}=\frac{{2({k^2}-1)}}{{{k^2}+1}}$,${x_1}-{x_2}=\frac{-4k}{{{k^2}+1}}$.
∴直线AB的斜率$k=\frac{{{y_1}-{y_2}}}{{{x_1}-{x_2}}}=\frac{{[k({x_1}-1)+1]-[-k({x_2}-1)+1]}}{{{x_1}-{x_2}}}=\frac{{k({x_1}+{x_2})-2k}}{{{x_1}-{x_2}}}=1$,
又直线CP的斜率也为1,所以CP∥AB.

点评 本题考查了圆的方程及其性质、直线与圆的位置关系及其应用、数量积运算性质、一元二次方程的根与系数的关系、斜率与平行线之间的关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.在极坐标系中,直线tanθ=$\frac{1}{2}$被圆ρ=4sinθ截得的弦长为$\frac{4\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.已知共有75名非体育迷,且在45名男观众中,有15名是体育迷.
(1)根据已知条件列出2×2列联表;
(2)并据此资料你觉得是否有理由认为“体育迷”与性别有关?
附:k2=$\frac{n(ad-bc)2}{(a+b)(c+d)(a+c)(b+d)}$.
P(k2≥k00.050.01
k03.8416.635

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.画出下列函数的图象,并写出单调区间.
(1)f(x)=-$\frac{1}{x+2}$;
(2)f(x)=|x|•|x-2|;
(3)f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x≤0}\\{-2x+2,x>0}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图:PA为⊙O的切线,A为切点,割线PBC过圆心O,PA=10,PB=5,则AC长为$6\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知集合U=R,A={x|y=$\sqrt{lo{g}_{2}(x-1)}$},B={y|y=($\frac{1}{2}$)x+1,-2≤x≤-1},C={x|x<a-1}.
(1)求A∩B;
(2)若C⊆∁UA,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系xOy中,动点P到点D(2,3)的距离为4,设点P的轨迹为C.
(Ⅰ)写出C的方程;
(Ⅱ)设直线y=kx+1与C交于A,B两点,当k为何值时,$\overrightarrow{DA}$⊥$\overrightarrow{DB}$,此时|$\overrightarrow{AB}$|的值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合A={x|-1<x<5,x∈Z},B={y|y=ln(e-x2)},则A∩B=(  )
A.(-1,1]B.{0,1}C.(-1,$\sqrt{e}$]D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,三棱台ABC-DEF中,BE⊥底面DEF,AB=BE=$\frac{1}{2}$DE=1,∠ABC=90°.
(1)求证:AD⊥平面AEF;
(2)若二面角E-AC-F的正弦值为$\frac{2\sqrt{2}}{3}$,求EF.

查看答案和解析>>

同步练习册答案