精英家教网 > 高中数学 > 题目详情
5.在平面直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}x=acosφ\\ y=bsinφ\end{array}$(a>b>0,φ为参数),且曲线C上的点M(2,$\sqrt{3}$)对应的参数φ=$\frac{π}{3}$,以O为极点,x轴的正半轴为极轴建立极坐标系.
(1)求曲线C的普通方程;
(2)若A(ρ1,θ),B(ρ2,θ+$\frac{π}{2}$)是曲线C上的两点,求$\frac{1}{ρ_1^2}$+$\frac{1}{ρ_2^2}$的值.

分析 (1)由题意可得:$\left\{\begin{array}{l}{2=acos\frac{π}{3}}\\{\sqrt{3}=bsin\frac{π}{3}}\end{array}\right.$,解得a,b,即可得出椭圆的标准方程.
(2)A(ρ1,θ),B(ρ2,θ+$\frac{π}{2}$)是曲线C上的两点,可得${ρ}_{1}^{2}(\frac{co{s}^{2}θ}{16}+\frac{si{n}^{2}θ}{4})=1$,${ρ}_{2}^{2}(\frac{si{n}^{2}θ}{16}+\frac{co{s}^{2}θ}{4})=1$,化简整理即可得出.

解答 解:(1)由题意可得:$\left\{\begin{array}{l}{2=acos\frac{π}{3}}\\{\sqrt{3}=bsin\frac{π}{3}}\end{array}\right.$,解得a=4,b=2.
∴曲线C的普通方程为$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}$=1.
(2)A(ρ1,θ),B(ρ2,θ+$\frac{π}{2}$)是曲线C上的两点,
可得直角坐标(ρ1cosθ,ρ1sinθ),(-ρ2sinθ,ρ2cosθ),
代入椭圆标准方程可得:${ρ}_{1}^{2}(\frac{co{s}^{2}θ}{16}+\frac{si{n}^{2}θ}{4})=1$,${ρ}_{2}^{2}(\frac{si{n}^{2}θ}{16}+\frac{co{s}^{2}θ}{4})=1$.
∴$\frac{1}{ρ_1^2}$+$\frac{1}{ρ_2^2}$=$\frac{co{s}^{2}θ+si{n}^{2}θ}{16}$+$\frac{si{n}^{2}θ+co{s}^{2}θ}{4}$=$\frac{1}{16}+\frac{1}{4}$=$\frac{5}{16}$.

点评 本题考查了参数方程化为普通方程、极坐标方程化为直角坐标方程,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.如图,正方体ABCD-A1B1C1D1中,AB=2,点E是A1D1的中点,点F是CE的中点.
(Ⅰ)求证:AE∥平面BDF;
(Ⅱ)求二面角B-DE-C的余弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠ABC=60°,PA⊥PB,PC=2.
(Ⅰ)求证:平面PAB⊥平面ABCD;
(Ⅱ)若PA=PB,求二面角A-PC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在平面直角坐标系中,过点P(3,1)的直线l的参数方程为$\left\{{\begin{array}{l}{x=3+tcosα}\\{y=1+tsinα}\end{array}}\right.$(t为参数,α为l的倾斜角).以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系.曲线C1:ρ=2cosθ,曲线C2:ρ=4cosθ.
(Ⅰ)若直线l与曲线C1有且仅有一个公共点,求直线l的极坐标方程;
(Ⅱ)若直线l与曲线C1交于不同两点C、D,与C2交于不同两点A、B,这四点从左至右依次为B、D、C、A,求|AC|-|BD|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知直线l:$\left\{\begin{array}{l}{x=m+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数,α≠0)经过椭圆C:$\left\{\begin{array}{l}{x=2cosφ}\\{y=\sqrt{3}sinφ}\end{array}\right.$(φ为参数)的左焦点F.
(1)求实数m的值;
(2)设直线l与椭圆C交于A、B两点,求|FA|×|FB|取最小值时,直线l的倾斜角α.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知实数x,y,满足$\left\{\begin{array}{l}{2x+y-4≤0}\\{x-y+1≥0}\\{x+2y-2≥0}\end{array}\right.$,则z=-$\sqrt{2}$x+y的最大值是(  )
A.2-$\sqrt{2}$B.1C.2$\sqrt{2}$D.1+$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设[x]表示不超过x的最大整数,如[1]=1,[0.5]=0,已知函数f(x)=$\frac{[x]}{x}$-k(x>0),若方程f(x)=0有且仅有3个实根,则实数k的取值范围是(  )
A.$({\frac{1}{2},\frac{2}{3}}]$B.$({\frac{2}{3},\frac{3}{4}}]$C.$({\frac{3}{4},\frac{4}{5}}]$D.$({\frac{4}{5},\frac{5}{6}})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图,对于正方体ABCD-A1B1C1D1,给出下列四个结论:
①直线AC∥平面A1B1C1D1
②直线AC1∥直线A1B
③直线AC⊥平面DD1B1B
④直线AC1⊥直线BD
其中正确结论的序号为①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知,二面角α-l-β的平面角为120°,二面角γ-m-Φ中,γ⊥α,Φ⊥β,则二面角γ-m-Φ的平面角大小为(  )
A.60°B.120°C.60°或120°D.不确定

查看答案和解析>>

同步练习册答案