精英家教网 > 高中数学 > 题目详情
8.求函数y=($\frac{1}{2}$)-x2+4x-3单调区间单调减区间为(-∞,2),单调增区间为[2,+∞).

分析 可看出该函数是由t=-x2+4x-3和$y=(\frac{1}{2})^{t}$复合而成的复合函数,这样根据二次函数、指数函数和复合函数的单调性便可得出原函数的单调区间.

解答 解:设-x2+4x-3=t′,则$y=(\frac{1}{2})^{t}$为关于t的减函数;
函数t=-x2+4x-3在(-∞,2)上单调递增,在[2,+∞)上单调递减;
∴原函数在(-∞,2)上单调递减,在[2,+∞)上单调递增;
即原函数的单调递减区间为(-∞,2),单调递增区间为[2,+∞).
故答案为:单调减区间为(-∞,2),单调增区间为[2,+∞).

点评 考查复合函数的定义,二次函数、指数函数和复合函数的单调性的判断和单调区间的求法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=t-3}\\{y=\sqrt{3}t}\end{array}\right.$(t为参数),以直角坐标系xOy中的原点O为极点,x轴的非负半轴为极轴,圆C的极坐标方程为ρ2-4ρcosθ+3=0.
(1)求l的普通方程及C的直角坐标方程;
(2)P为圆C上的点,求P到l的距离的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,梯形ABCD中:AB∥DC,AB=2DC=10,BD=$\frac{4}{3}$AD=8,PO⊥平面ABCD,O、N分别是AD、AP的中点.
(1)求证:DN∥平面PBC.
(2)若PA与平面ABCD所成的角为$\frac{π}{4}$,且$\frac{PM}{MC}$=$\frac{5}{4}$,求二面角P-AD-M的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知在平面直角坐标系xOy中,过定点P倾斜角为α的直线l的参数方程为:$\left\{\begin{array}{l}x=tcosα\\ y=-2+tsinα\end{array}\right.$(t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,圆心的极坐标为(3,$\frac{π}{2}$),半径为3的圆C与直线l交于A,B两点,则|PA|•|PB|=16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=1+t}\\{y=a-2t}\end{array}\right.$(t为参数)在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,极轴与x轴的非负半轴重合)中,圆C的方程为ρ=4cosθ.若直线l被圆C截得的弦长为$\sqrt{11}$,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=ex-$\frac{{{{(x+1)}^2}}}{2}$(e为自然对数的底数).
(Ⅰ)求函数y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)当x∈(-1,+∞)时,证明:f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=lnx-x+1,x∈(0,+∞),g(x)=x3-3a2x(a>0)
(1)求f(x)的最大值;
(2)若对?x1∈(0,+∞),总存在x2∈[1,2]使得f(x1)≤g(x2)成立,求a的取值范围;
(3)利用(1)的结论,证明不等式($\frac{1}{n}$)n+($\frac{2}{n}$)n+…+($\frac{n}{n}$)n<$\frac{e}{e-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.解不等式|x-2|+|x-1|≥5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,点D在AB上,DE⊥EB,且AD=2$\sqrt{3}$,AE=6
(1)证明:直线AC与△BDE的外接圆相切;
(2)求EC的长.

查看答案和解析>>

同步练习册答案