精英家教网 > 高中数学 > 题目详情
设函数f(x)=
2
x-1

(1)证明函数f(x)在区间(1,+∞)上是减函数;
(2)当x∈[2,6]时,求函数f(x)的最大值和最小值.
考点:函数的最值及其几何意义,函数单调性的判断与证明
专题:函数的性质及应用
分析:(1)利用函数单调性的定义证明函数的单调性,即取值、作差、变形、定号、下结论;
(2)根据(1)知函数y在[2,6]上单调递减,根据函数的单调性求出最大值和最小值.
解答: 证明:(1)设x1、x2是区间(1,+∞)上的任意两个实数,且x1<x2
则f(x1)-f(x2)=
2
x1-1
-
2
x2-1
=
2(x2-x1)
(x1-1)(x2-1)

由1<x1<x2得,x2-x1>0,(x1-1)(x2-1)>0,
所以f(x1)-f(x2)>0,即f(x1)>f(x2
所以函数f(x)在区间(1,+∞)上是减函数;
(2)解:由(1)知,函数f(x)=
2
x-1
在区间[2,6]上单调递减,
∴当x=2时,函数的最大值f(x)max=f(2)=2,
当x=6时,函数的最小值f(x)min=f(6)=
2
5
点评:本题考查函数单调性的定义,及根据单调性定义证明函数单调性的方法,根据函数单调性求闭区间上函数的最值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

无穷数列{an}的前n项和Sn=npan(n∈N*),并且a1≠a2.S10=45.
(1)求p的值;
(2)求{an}的通项公式;
(3)作函数f(x)=a2x+a3x2+…+an+1xn,证明:f(
1
3
)<
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x-a|+2|x+1|.
(1)当a=2时,解不等式f(x)>4.
(2)若不等式f(x)<3x+4的解集是{x|x>2},求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定点M(0,1),N(1,-1),Q(1,0),动点P满足2
MP
NP
=|
PQ
|2+1.
(1)求动点P的轨迹方程;
(2)设动点P的轨迹与x轴的负半轴的交点为A,过点A作两条斜率分别为k1,k2的直线交动点P的轨迹于B,C两点,且k1k2=-2,试证明直线BC恒过一个定点,并求出该定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的方程为
x2
4
+
y2
3
=1,椭圆上有一点P满足∠PF1F2=90°,求△PF1F2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在一个口袋内装有7个相同的球,其中三个球标有数字0,4个球标有数字1,若从袋中摸出3个球,那么摸出的三个球所标数字之和小于2或大于3的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-x2+a,x∈R的图象在点x=0处的切线为y=bx.(e≈2.71828).
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)当x∈R时,求证:f(x)≥-x2+x;
(Ⅲ)若f(x)>kx对任意的x∈(0,+∞)恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)=a+
2
2x+1
(x∈R);
(1)若f(x)是奇函数,求a值;
(2)在(1)的条件下,解不等式f(2t+1)+f(t-5)≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
满足|
a
|=|
b
|=|
a
+
b
|=1,则向量
a
b
夹角的余弦值为
 

查看答案和解析>>

同步练习册答案