分析 1≤x≤y≤z≤t≤100,可得$\frac{x}{y}$+$\frac{z}{t}$≥$\frac{1}{y}$+$\frac{z}{100}$,再利用基本不等式的性质即可得出.
解答 解:∵1≤x≤y≤z≤t≤100,则$\frac{x}{y}$+$\frac{z}{t}$≥$\frac{1}{y}$+$\frac{z}{100}$≥2$\sqrt{\frac{1}{y}•\frac{z}{100}}$≥$\frac{1}{5}$,当且仅当x=1,y=z=10,t=100时取等号.
∴$\frac{x}{y}$+$\frac{z}{t}$的最小值是$\frac{1}{5}$.
故答案为:$\frac{1}{5}$.
点评 本题考查了不等式的基本性质与基本不等式的性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | ⑤ | B. | ①⑤ | C. | ②⑤ | D. | ①②⑤ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 质量指标值分组 | [75,85) | [85,95) | [95,105) | [105,115) | [115,125) |
| 频数 | 10 | 20 | 40 | 20 | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com