分析 根据抛物线的定义得抛物线上的点到焦点的距离等于该点到准线的距离,因此求出抛物线的准线方程,结合题中数据加以计算,即可得到本题答案.
解答 解:∵抛物线y2=4x的焦点为F(1,0),准线为x=-1,
∴根据抛物线的定义,Pi(i=1,2,3,…,2015)到焦点的距离等于Pi到准线的距离,即|PiF|=xi+1,
$\overrightarrow{{P_1}F}+\overrightarrow{{P_2}F}+…+\overrightarrow{{P_{100}}F}=\overrightarrow 0$,可得1-x1+1-x2+…+1-x100=0,
∴x1+x2+…+x100=100
∴|P1F|+|P2F|+…|P100F|=(x1+1)+(x2+1)+…+(x100+1)=(x1+x2+…+x100)+100=100+100=200.
故答案为:200.
点评 本题考查了抛物线的定义、标准方程和简单几何性质,考查向量等知识,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若l∥α,l∥β,则α∥β | B. | 若α⊥β,l⊥α,则l⊥β | C. | 若l∥α,l⊥β,则α⊥β | D. | 若α⊥β,l∥α,则α⊥β |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com