精英家教网 > 高中数学 > 题目详情

已知函数 ,且能表示成一个奇函数和一个偶函数的和.

(1)求的解析式.

(2)命题:函数在区间上是增函数;命题:函数是减函数,如果命题有且仅有一个是真命题,求实数的取值范围.

(3)在(2)的条件下,比较的大小.

 

【答案】

(1);(2);(3)

【解析】

试题分析:(1)

解得

(2)上是增函数

,解得

是减函数

又命题有且仅有一个是真命题

(3)

由(2)知

设函数

在区间上为增函数

时,即:

考点:本题考查了函数的解析式及单调性的运用

点评:对函数的考查主要有:①考查函数的表示法、定义域、值域、单调性、奇偶性、反函数和函数的图象。②函数与方程、不等式、数列是相互关联的概念,通过对实际问题的抽象分析,建立相应的函数模型并用来解决问题,是考试的热点。③考查运用函数的思想来观察问题、分析问题和解决问题,渗透数形结合和分类讨论的基本数学思想。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2+(a+1)x+lg|a+2|(a∈R,且a≠-2).
(Ⅰ)若f(x)能表示成一个奇函数g(x)和一个偶函数h(x)的和,求g(x)和h(x)的解析式;
(Ⅱ)命题P:函数f(x)在区间[(a+1)2,+∞) 上是增函数; 命题Q:函数g(x)是减函数.如果命题P、Q有且仅有一个是真命题,求a的取值范围;
(Ⅲ)在(Ⅱ)的条件下,比较f(1)和
16
的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•铁岭模拟)已知函数f(x)=x2+(a+1)x+lg|a+2|(a∈R,且a≠-2)
(I)若f(x)能表示成一个奇函数g(x)和一个偶函数h(x)的和,求g(x)和h(x)的解析式;
(II)命题P:函数f(x)在区间[(a+1)2,+∞)上是增函数;命题Q:函数g(x)是减函数.如果命题P、Q有且仅有一个是真命题,求a的取值范围;
(III)在(II)的条件下,比较f(2)与3-lg2的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+(a+1)x+lg|a+2|(a∈R,且a≠-2).
(I)若f(x)能表示成一个奇函数g(x)和一个偶函数h(x)的和,求g(x)和h(x)的解析式;
(Ⅱ)命题P:函数f(x)在区间[(a+1)2,+∞)上是增函数;命题Q:函数g(x)是减函数.如果命题P、Q有且仅有一个是真命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2008-2009学年四川省成都七中高三数学专项训练:指数、对数函数(解析版) 题型:解答题

已知函数f(x)=x2+(a+1)x+lg|a+2|(a∈R,且a≠-2).
(I)若f(x)能表示成一个奇函数g(x)和一个偶函数h(x)的和,求g(x)和h(x)的解析式;
(Ⅱ)命题P:函数f(x)在区间[(a+1)2,+∞)上是增函数;命题Q:函数g(x)是减函数.如果命题P、Q有且仅有一个是真命题,求a的取值范围.

查看答案和解析>>

同步练习册答案