精英家教网 > 高中数学 > 题目详情
16.已知函数$f(x)=\left\{\begin{array}{l}|lgx|,0<x≤10\\-\frac{1}{2}x+6,x>10.\end{array}\right.$,若x1<x2<x3,且f(x1)=f(x2)=f(x3),则x1x2x3的取值范围是(  )
A.(1,10)B.(10,12)C.N1D.(20,24)

分析 作函数$f(x)=\left\{\begin{array}{l}|lgx|,0<x≤10\\-\frac{1}{2}x+6,x>10.\end{array}\right.$的图象,从而结合图象可知lgx1=lgx2=-$\frac{1}{2}$x3+6,从而求得.

解答 解:作函数$f(x)=\left\{\begin{array}{l}|lgx|,0<x≤10\\-\frac{1}{2}x+6,x>10.\end{array}\right.$的图象如下,

∵x1<x2<x3,f(x1)=f(x2)=f(x3),
∴-lgx1=lgx2=-$\frac{1}{2}$x3+6,
∴x1x2=1,10<x3<12,
∴10<x1x2x3<12.
故选:B.

点评 本题考查了分段函数的性质的综合应用及数形结合的思想应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.在△ABC中,A=60°,BC=$\sqrt{10}$,D是AB边上的一点,CD=$\sqrt{2}$,△CBD的面积为1,则BD的长为(  )
A.$\frac{3}{2}$B.4C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}的前n项和为Sn,且a1=0,nan+1=Sn+n(n+1).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足an+log3n=log3bn,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.根据下列条件,求曲线的标准方程
(1)a=2,一个焦点为(4,0)的双曲线的标准方程
(2)焦点F在直线l:3x-2y-6=0上的抛物线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设a,b,c是△ABC内角A,B,C所对的边,且$a=bcosC+\frac{{\sqrt{3}}}{3}csinB$.
(1)求B;
(2)若b=2,△ABC的面积为$\sqrt{3}$,求a,c.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为2的两个等腰直角三角形,则该几何体外接球的体积为(  )
A.$4\sqrt{3}$B.$4\sqrt{3}π$C.24πD.24

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知$\overrightarrow m=(sin(x-\frac{π}{3})\;,\;1)\;,\;\overrightarrow n=(cosx\;,\;1)$
(1)若$\overrightarrow{m}$∥$\overrightarrow{n}$,求tanx值
(2)若函数f(x)=$\overrightarrow m•\overrightarrow n$,$x∈[{0\;,\;\frac{π}{2}}]$,求函数f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列各组函数表示相同函数的是(  )
A.f(x)=$\sqrt{{x}^{2}}$,g(x)=($\sqrt{x}$)2B.f(x)=1,g(x)=x2
C.f(x)=$\left\{\begin{array}{l}{x,x≥0}\\{-x,x<0}\end{array}\right.$,g(t)=|t|D.f(x)=x+1,g(x)=$\frac{{x}^{2}-1}{x-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=4+2ax-1(a>0且a≠1)的图象恒过定点P,则点P的坐标是(  )
A.(1,6)B.(1,5)C.(0,5)D.(5,0)

查看答案和解析>>

同步练习册答案